Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0887-624X
    Keywords: coupling reaction ; living polymer ; microstructure ; coupling yield ; 1,4-enchainment ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The most important variable affecting the yield in the coupling reactions of polymeric organolithium compounds with chlorosilane compounds has been investigated through size-exclusion chromatographic (SEC) analysis. The coupling reaction of poly(styryl)lithium with dichlorodimethylsilane as a silane-coupling agent provided 44 wt % of the coupling yield. The coupling yield, depending on the chain end reactivity of active polymers, was not greatly affected. The addition of a Lewis base such as N,N,N′,N′-tetramethylethylenediamine (TMEDA) even after complete polymerization of the dienes in hydrocarbon seems to affect the coupling reaction, resulting in decreasing the yield. The 1,2- or 3,4-enchain contents in the polydiene backbones affected the reduction of the linking efficiency in the coupling of the poly(dienyl)lithiums with chlorosilanes as the linking agent. The linking yields of the active polymers including over 75 mol % of 1,2- or 3,4-enchainment on the polydiene segment were below 20 wt %. The linking yields exhibited a dependence not only on the steric requirement of the chain end, but also the microstructure of the polydiene segment. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1743-1753, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 32 (1994), S. 1321-1328 
    ISSN: 0887-6266
    Keywords: ternary blends ; phenoxy ; poly(ε-caprolactone) ; SAN ; morphology ; tensile properties ; compatibilizer ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The compatibilizing effect of poly(ε-caprolactone) (PCL) on the blends of two immiscible polymers, poly(hydroxy ether of bisphenol A) (phenoxy) and poly(styrene-co-acrylonitrile) (SAN) has been investigated. The phase behavior of the ternary blends was affected by the AN content in the SAN copolymers and a maximum miscible region was observed at 19.5 wt % of AN. The effect of AN content on the phase behavior of the ternary blends was interpreted in terms of the relative magnitude of the segmental interaction energy densities, which were obtained by combining a melting point depression and an extended binary interaction model. When a small amount of PCL was added to the phenoxy/SAN blends, the phase morphology showed a finer phase dispersion, indicating that the interfacial tension between the phenoxy and SAN is considerably reduced. However, the improvement in tensile properties was limited despite the morphological change with the PCL content. From the results of the DSC measurements, SEM, and tensile testing, it was understood that the PCL acted as a compatibilizer for the immiscible phenoxy/SAN blends. © 1994 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 32 (1994), S. 1661-1670 
    ISSN: 0887-6266
    Keywords: poly(2,6-dimethyl-1,4-phenylene ether) ; polyethylene ionomer ; diblock copolymer ; morphology ; mechanical properties ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The compatibilizing effects of a styrene-4-vinyl pyridine diblock copolymer on the properties of immiscible poly(2,6-dimethyl-1,4-phenylene ether) (PPE)/polyethylene ionomer (Surlyn) blends are investigated by examining the phase morphology and the thermal and mechanical properties. The block copolymer is synthesized by sequential anionic polymerization at -78°C and melt-mixed with PPE and Surlyn at 290°C. When a small amount of block copolymer is present, the domain size of the dispersed phase becomes smaller. The tensile strength and elongation at break increase with addition of the block copolymer for PPE-rich matrix blends, whereas the tensile strength increases but the elongation at break decreases for Surlyn-rich matrix blends. These effects are interpreted in terms of the interfacial activity and the reinforcing effect of the block copolymer. From the experimental results, it is concluded that the block copolymer plays a role as an effective compatibilizer for PPE/Surlyn blends. © 1994 John Wiley & Sons, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 2169-2175 
    ISSN: 0887-6266
    Keywords: interfacial tension ; block copolymers ; molecular structure ; polymer interface ; morphology ; interfacial adhesion ; pendant drop method ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effects of the molecular structure of the styrene-isoprene block copolymer on the interfacial tension, the morphology and the interfacial adhesion of polystyrene/polyisoprene were investigated. A reduction in interfacial tension is observed with the addition of a small amount of copolymer, followed by a leveling off as the copolymer concentration exceeds the critical micelle concentration. The reduction in interfacial tension between polystyrene and polyisoprene is more significant when the isoprene-rich diblock copolymer is added than the cases when the symmetric or styrene-rich diblock copolymer is added. The interfacial tension data seem to be consistent with the phase morphology and the interfacial adhesion: the lower the interfacial tension, the smaller the domain size of dispersed phase and the better the interfacial adhesion. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...