Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • criterion of homogeneity  (1)
  • inverse analysis  (1)
  • pulse heating  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 21 (2000), S. 553-561 
    ISSN: 1572-9567
    Keywords: inverse analysis ; Levenberg–Marquardt algorithm ; pulse heating ; relaxation parameters ; thermal diffusivity ; universal heat conduction model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract This paper presents an inverse analysis for simultaneous estimation of relaxation parameters and thermal diffusivity with a universal heat conduction model by using temperature responses measured at the surface of a finite medium subjected to pulse heat fluxes. In the direct analysis, the temperature responses in a finite medium subjected to a pulse heat flux are derived by solving the universal heat conduction equation. The inverse analysis is performed by a nonlinear least-squares method for determining the two relaxation parameters and thermal diffusivity. Here, the nonlinear system of algebraic equations resulting from the sensitivity matrix is solved by the Levenberg–Marquardt iterative algorithm. The inverse analysis is utilized to estimate the relaxation parameters and the thermal diffusivity from the simulated experimental non-Fourier temperature response obtained by direct calculation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 19 (1998), S. 1239-1251 
    ISSN: 1572-9567
    Keywords: criterion of homogeneity ; dispersed composites ; finite element method (FEM) ; laser flash method ; thermal conductivity ; thermal diffusivity ; steady-state comparison method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The effective thermal conductivity of dispersed composites with a hot-melt-adhesive matrix, measured using the steady-state method, is compared with the apparent thermal conductivity calculated from the average heat capacity and from the thermal diffusivity measured by the laser-flash method. The transient effect has been observed obviously at higher volume percentages for various dispersed particle sizes and ratios of the thermal conductivity values of dispersed and continuous phases. All of the experimental results are compared with those calculated by existing models and by the finite element method (FEM). An attempt has been made to show how the criterion for the homogeneity of dispersed composites under transient conditions is affected by the percentages of dispersed phase, dispersed particle size, and ratio of the thermal conductivity values of dispersed and continuous phases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...