Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • cyclodextrin  (1)
  • immobilization  (1)
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 20-25 
    ISSN: 0006-3592
    Schlagwort(e): filamentous fungi ; immobilization ; biofilm bioreactor ; oil emulsion ; degradation ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: A new type of horizontal biofilm bioreactor for continuous bioconversion of emulsified oily substrate by immobilized growing biofilm of filamentous fungi was designed, constructed, and feasibility tested. The new reactor design provides “self”-immobilization of homogenized mycelium leading to even biofilm development. This was accomplished by using stainless steel screens of optimal mesh, mounted in parallel and stretching outward from a main rotating axis of a biological rotating contractor. Each screen was equipped with a pair of stainless steel blades mounted on supports allowing for continuous biofilm “shaving” beyond a predetermined thickness, thus retaining freshly growing active biofilm surface. The feasibility of the new bioreactor was demonstrated by decalactone production from emulsified castor oil by immobilized filamentous fungi (Tyromyces sambuceus). The combination of oriented metal screens and moving blades was found to be highly effective for a model system in maintaining stable substrate emulsion in the reactor in either batchwise or continuous processing, as well as maintaining biofilm thickness with continuous removal of excess growing hyphae. © 1996 John Wiley & Sons, Inc.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Chicester [u.a.] : Wiley-Blackwell
    Journal of Molecular Recognition 11 (1998), S. 231-235 
    ISSN: 0952-3499
    Schlagwort(e): product removal ; γ-decalactone ; cyclodextrin ; castor oil ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin
    Notizen: In situ product removal (ISPR) involves actions taken for the fast removal of a product from the producing cell. ISPR is implemented to improve yield and productivity via minimization of product inhibition, minimization of product losses due to degradation or evaporation, and reduction of the number of subsequent downstream processing steps. Here we describe the implementation of affinity-based, specific ISPR as a crucial component of an integrative approach to problems associated with the biocatalytic production of a product exhibiting poor water solubility from an oily, water-insoluble precursor. Our integrative ISPR-based approach consists of co-immobilization of the oily substrate emulsion and the biocatalyst within bilayered alginate beads. A particulate-specific adsorbent, exhibiting high binding capacity of the product, is suspended in the reaction medium with periodical replacements. According to this approach, ISPR implementation is expected to shift the equilibration of product distribution between the co-immobilized oily substrate and the outer medium via specific product immobilization onto the added adsorbent. The product may subsequently be readily recovered via single-step final purification. This integrative approach was successfully demonstrated by the affinity-based ISPR of γ-decalactone (4-decanolide). γ-Decalactone was produced from castor oil via its β-oxidation by the filamentous fungus Tyromyces sambuceus, co-immobilized with emulsified substrate within bilayered alginate beads. Product immobilization onto medium-suspended epichlorohydrin-crosslinked β-cyclodextrin resulted in higher yield and easy pure product recovery. Copyright © 1998 John Wiley & Sons, Ltd.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...