Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 114-130 
    ISSN: 0730-2312
    Schlagwort(e): chromatin ; histone ; mitosis ; nuclear matrix ; nucleolus ; micromanipulation ; tensegrity ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Chromatin is thought to be structurally discontinuous because it is packaged into morphologically distinct chromosomes that appear physically isolated from one another in metaphase preparations used for cytogenetic studies. However, analysis of chromosome positioning and movement suggest that different chromosomes often behave as if they were physically connected in interphase as well as mitosis. To address this paradox directly, we used a microsurgical technique to physically remove nucleoplasm or chromosomes from living cells under isotonic conditions. Using this approach, we found that pulling a single nucleolus or chromosome out from interphase or mitotic cells resulted in sequential removal of the remaining nucleoli and chromosomes, interconnected by a continuous elastic thread. Enzymatic treatments of interphase nucleoplasm and chromosome chains held under tension revealed that mechanical continuity within the chromatin was mediated by elements sensitive to DNase or micrococcal nuclease, but not RNases, formamide at high temperature, or proteases. In contrast, mechanical coupling between mitotic chromosomes and the surrounding cytoplasm appeared to be mediated by gelsolin-sensitive microfilaments. Furthermore, when ion concentations were raised and lowered, both the chromosomes and the interconnecting strands underwent multiple rounds of decondensation and recondensation. As a result of these dynamic structural alterations, the mitotic chains also became sensitive to disruption by restriction enzymes. Ion-induced chromosome decondensation could be blocked by treatment with DNA binding dyes, agents that reduce protein disulfide linkages within nuclear matrix, or an antibody directed against histones. Fully decondensed chromatin strands also could be induced to recondense into chromosomes with pre-existing size, shape, number, and position by adding anti-histone antibodies. Conversely, removal of histones by proteolysis or heparin treatment produced chromosome decondensation which could be reversed by addition of histone H1, but not histones H2b or H3. These data suggest that DNA, its associated protein scaffolds, and surrounding cytoskeletal networks function as a structurally-unified system. Mechanical coupling within the nucleoplasm may coordinate dynamic alterations in chromatin structure, guide chromosome movement, and ensure fidelity of mitosis. J. Cell. Biochem. 65:114-130. © 1997 Wiley-Liss, Inc.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 127-142 
    ISSN: 0730-2312
    Schlagwort(e): chromosome architecture ; disassembly ; reassembly ; proteases ; in vitro model ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Topoisomerase II has been suggested to play a major role in chromosome organization based on its DNA decatenating activity and its ability to mediate direct binding interactions between DNA and nuclear matrix. However, this latter point remains controversial. Here we address the question of whether the chromatin binding activity of Topoisomerase II is sufficient to modify chromosome form using whole mammalian chromosomes in vitro. Intact chromosomes were microsurgically removed from living cells and disassembled by treatment with protease or heparin. When these disassembled chromosomes were incubated with recombinant human Topoisomerase II, the enzyme became incorporated into chromatin and reassembly resulted, leading to almost complete restoration of pre-existing chromosome shape and position within minutes. Chromosome reconstituition by Topoisomerase II was dose-dependent, saturable, and appeared to be controlled stoichiometrically, rather than enzymatically. Similar reassembly was observed in the absence of ATP and when a catalytically inactive thermosensitive Topoisomerase II mutant was used at the restrictive temperature. Chromosome recondensation also could be induced after the strand-passing activity of Topoisomerase II was blocked by treatment with an inhibitor of its catalytic activity, amsacrine. When a non-hydrolyzable β,γ-imido analog of ATP (AMP-PNP) was used to physiologically fix bound Topoisomerase II enzyme in a closed form around DNA, subsequent chromosome disassembly was prevented in the presence of high salt. These data suggest that Topoisomerase II may control higher order chromatin architecture through direct binding interactions, independently of its well-known catalytic activity. J. Cell. Biochem. 69:127-142, 1998. © 1998 Wiley-Liss, Inc.
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...