Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 425-433 
    ISSN: 0887-6266
    Keywords: temperature dependence ; frequency dependence ; poly(ethylene oxide) ; dielectric constant ; hydrostatic pressure ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Electrical impedance measurements have been made in the frequency range 5 Hz to 10 MHz in pure poly(ethylene oxide) having a molecular weight of 600,000 from 12 K nearly up to the melting point of the crystalline phase (about 330 K). A pronounced relaxation peak in the dielectric loss and a corresponding step in the dielectric constant have been observed at about 240 K, which can be readily related to the glass-rubber transition in the amorphous region of the polymer. As the temperature approaches the melting point there are large increases in the real ε′ and imaginary e′ parts of the dielectric constant. The frequency dependence of ε′ is characterized by a primary relaxation process, whose frequency increases with increasing temperature as a consequence of decrease of the average structural relaxation time. There is strong evidence that this low-frequency dispersion arises mainly from the diffusive transport of ionic charge carriers rather than a purely orientation relaxation process. In addition, the effects of hydrostatic pressures (0-0.25 GPa) on the frequency dependencies of the real ε′ and imaginary ε′ parts of the dielectric constant have been measured in the temperature range from 254 to 329 K. An advantage of applying pressure is that it shifts the αa relaxation peak into an experimentally accessible frequency window of the equipment; the lowering of frequency results from a decrease in the relaxation volume and a consequent reduction in the mobility of the molecular units. Results are discussed in terms of theoretical models of the effect of pressure on the glass transition, providing information on the cooperative dynamics. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...