Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 15 (1993), S. 426-435 
    ISSN: 0887-3585
    Keywords: molecular dynamics ; free energy ; perturbation theory ; kinetic mechanism ; dissociation constants ; dihydrofolate reductase ; 8-methyl-pterins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Molecular dynamics simulation and free energy perturbation techniques have been used to study the relative binding free energies of the designed mechanism-based pterins, 8-methylpterin and 6,8-dimethylpterin, to dihydrofolate reductase (DHFR), with co-factor nicotinamide adenine dinucleotide phosphate (NADPH). The calculated free energy differences suggest that DHFR.NADPH.6,8-dimethylpterin is thermodynamically more stable than DHFR.NADPH.8-methylpterin by 2.4 kcal/mol when the substrates are protonated and by 1.3 kcal/mol when neutral. The greater binding strength of 6,8-dimethylpterin may be attributed largely to hydration effects. In terms of an appropriate model for the pH-dependent kinetic mechanism, these differences can be interpreted consistently with experimental data obtained from previous kinetic studies, i.e., 6,8-dimethylpterin is a more efficient substrate of vertebrate DHFRs than 8-methylpterin. The kinetic data suggest a value of 6.6 ± 0.2 for the pKa of the active site Glu-30 in DHFR.NADPH. We have also used experimental data to estimate absolute values for thermodynamic dissociation constants of the active (i.e., protonated) forms of the substrates: these are of the same order as for the binding of folate (0.1-10 μM). The relative binding free energy calculated from the empirically derived dissociation constants for the protonated forms of 8-methylpterin and 6,8-dimethylpterin is 1.4 kcal/mol, a value which compares reasonably well with the theoretical value of 2.4 kcal/mol. © 1993 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...