Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 1263-1274 
    ISSN: 0271-2091
    Keywords: computational fluid dynamics ; numerical methods ; error ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The methods of estimating numerical errors given in an earlier paper are extended in directions that make them useful in actual CFD applications. In particular, the method of estimating convergence error (the error due to insufficient iteration) is extended to allow the possibility of complex eigenvalues; an ad hoc method that can be applied to any case is also given. For the discretization error, which arises from the numerical approximation of the differential equation(s), methods that can be used on non-uniform drids are presented; they can be extended to unstructured grids as well. The utility of these methods is demonstrated for linear problems as well as solutions of the Navier-Stokes equations. The examples show that the estimation of errors is neither difficult nor expensive.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 1129-1158 
    ISSN: 0271-2091
    Keywords: spectral finite difference ; direct numerical simulation ; message-passing computers ; data partitioning ; fractional step methods ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A method for efficient implementation of a combined spectral finite difference algorithm for computation of incompressible stratified turbulent flows on distributed memory computers is presented. The solution technique is the fractional step method with a semi-implicit time advancement scheme. A single-programme multiple-data abstraction is used in conjunction with a static data-partitioning scheme. The distributed FFTs required in the explicit step are based on the transpose method and the large sets of independent tridiagonal systems of equations arising in the implicit steps are solved using the pipelined Thomas algorithm. A speed-up analysis of a model problem is presented for three partitioning schemes, namely unipartition, multipartition and transpose partition. It is shown that the unipartitioning scheme is best suited for this algorithm. Performance measurements of the overall as well as individual stages of the algorithm are presented for several different grids and are discussed in the context of associated dependency and communication overheads. An unscaled speed-up efficiency of up to 91% on doubling the number of processors and up to 60% on an eightfold increase in the number of processors was obtained on the Intel Paragon and iPSC/860 Hypercube. Absolute performance of the code was evaluated by comparisons with performance on the Cray-YMP. On 128 Paragon processors, performance up to five times that of a single-processor Cray-YMP was obtained. The validation of the method and results of grid refinement studies in stably stratified turbulent channel flows are presented. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...