Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • dopaminergic receptors  (1)
  • progesterone  (1)
  • 1
    ISSN: 1435-1463
    Keywords: δ9-Tetrahydrocannabinol ; mesolimbic dopaminergic neurons ; estrogens ; dopamine ; dopaminergic receptors ; limbic forebrain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In this work, we studied the possible estrogenic modulation of the effects of δ9-tetrahydrocannabinol (THC) on mesolimbic dopaminergic activity, by examining the effects of an acute dose of this cannabinoid: (i) during the estrous cycle; (ii) after ovariectomy, chronic estrogen-replacement and tamoxifen (TMX)-induced blockade of estrogenic receptors; and (iii) combined with a single and physiological injection of estradiol to ovariectomized rats. THC significantly decreased the density of D1 dopaminergic receptors and non-significantly increased the L-3,4-dihydroxyphenylacetic acid (DOPAC) content in the limbic forebrain of ovariectomized rats chronically replaced with estrogens. The decrease in D1 receptors was also produced by TMX, whereas the coadministration of both THC and TMX did not lead to a major decrease. In addition to the trend of THC increasing DOPAC content, this cannabinoid was also able to increase the ratio between DOPAC and dopamine, although this last effect only occurred after coadministration of THC and TMX, which had been ineffective administered individually. All these effects were not seen when THC was administered to normal cycling rats during each phase of estrous cycle and to ovariectomized rats without chronic estrogen replacement or only submitted to a single and acute dose of estradiol. This observation might be related to the fact that the density of limbic cannabinoid receptors increased in chronic estrogen-replaced ovariectomized ratsversus normal cycling, ovariectomized or acutely estrogen-treated ovariectomized rats. Interestingly, THC administration in ovariectomized rats was followed by a slight, although significant, increase in tyrosine hydroxylase activity, which was also observed after coadministration of THC with a short-time and acute dose of estradiol. In summary, THC stimulated the presynaptic activity of mesolimbic dopaminergic neurons, but accompanied by a decrease in their postsynaptic sensitivity. These effects did not appear in normal cycling rats being only evident after ovariectomy and chronic estrogen replacement, which might be related to changes in binding characteristics of cannabinoid receptors in this area. Moreover, some of them appeared after TMX-induced blockade of estrogenic cytosolic receptors, which likely suggests the existence of a certain estrogenic modulation of the actions of THC on mesolimbic neurons. On the contrary, coadministration of THC with a single and shortly tested dose of estradiol was always ineffective in modifying THC effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1463
    Keywords: Estradiol ; progesterone ; limbic forebrain ; tyrosine hydroxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In this work, we have studied the time-course of the effects of pharmacological administration of ovarian steroids on tyrosine hydroxylase (TH) activity in the limbic forebrain of ovariectomized rats. Administration of estradiol produced a late decrease in TH activity. This effect was found 24 hours after the last steroid injection, disappearing at 32 hours. It was antagonized by progesterone, since a single injection of this steroid to estradiol-pretreated rats reversed to control values the estradiol-induced decrease. Nevertheless, the administration of progesterone after estradiol treatment caused a short-time decrease in the limbic activity of TH, which was observed 4 hours after the last steroid injection, disappearing subsequently. On the other hand, the administration of progesterone alone produced a biphasic effect, with a reduction at 24 hours, followed by an increase at 32 hours. These effects were only observed in the animals non-treated with estradiol, disappearing with a previous treatment with estrogens. Hence, it can be concluded that both ovarian steroids may affect the limbic TH activity. Thus, estradiol produced a late inhibitory effect on the activity of this enzyme, which was antagonized by progesterone. Administration of the last one to estradiol-treated rats produced a short-time inhibitory effect, whereas its administration to non-treated rats produced a late biphasic effect (inhibition followed by stimulation), which was not observed in estradiol-treated rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...