Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 52 (1996), S. 248-258 
    ISSN: 0006-3592
    Keywords: two-phase gas-liquid flow ; bubble columns ; dynamic three-dimensional numerical simulation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Detailed measurements of multiphase flows that prevail in bioreactors tell us that different transport mechanisms are dominating on different observation scales. The consequence in terms of reactor modeling is that the processes on different scales can be treated independently. A three-dimensional, dynamical model is presented that can be used to describe bubble column bioreactors on the reactor scale. It is based on the Navier-Stokes equation system. On the next smaller scale, the dynamics of the gas phase is described in a Lagrangian way, by tracking many bubble clusters or bubbles simultaneously on their way through the reactor. The model is capable of describing bubble columns of different size and can thus be used for scale-up. Its performance is demonstrated with a production-scale beer fermentor. © 1996 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...