Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 9 (1991), S. 217-224 
    ISSN: 0887-3585
    Keywords: protein-ligand interactions ; electron density ; quantum mechanics ; local density functional theory ; charge polarization ; enzymatic reaction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The migration of electron density of a substrate (folate) on binding to an enzyme (dihydrofolate reductase) is studied by a quantum-mechanical method originally developed in solid state physics. A significant polarization of the substrate is induced by the enzyme, toward the transition state of the enzymatic reaction, at the same time giving rise to “electronic strain energy” in the substrate and enhanced protein-ligand interactions. The spatial arrangement of protein charges that induces the polarization is identified and found to be structurally conserved for bacterial and vertebrate dihydrofolate reductases.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...