Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Substrate oxidation ; energy expenditure ; lipolysis ; ketogenesis ; “dawn” phenomenon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Growth hormone (GH) secretion is suppressed during insulin-like growth factor-I (IGF-I) administration. The aim of the study was to examine whether IGF-I alters the metabolic response to a GH pulse. Seven healthy male subjects (age 27±4 years, BMI 21.8±1.7 kg/m2) were treated with NaCl 0.9% (saline) or IGF-I (8 Μg · kg−1 · h−1) for 5 days by continuous subcutaneous infusion in a randomized, crossover fashion while receiving an isocaloric diet (30 kcal · kg−1 · day−1). On the third treatment day an intravenous bolus of 0.5 U GH was administered. Forearm muscle metabolism was examined by measuring arterialized and deep venous blood samples, forearm blood flow by occlusion plethysmography and substrate oxidation by indirect calorimetry. IGF-I treatment significantly reduced insulin concentrations by 80% (p〈0.02) and C-peptide levels by 78% (p〈0.02), as assessed by area under the curve. Non-esterified fatty acid (NEFA), glycerol and 3-OH-butyrate levels were elevated and alanine concentration decreased. Forearm blood flow rose from 2.10±0.43 (saline) to 2.79±0.37 ml · 100ml−1 · min−1 (IGF-I) (p〈0.02). GH-pulse: 10 h after i.v. GH injection serum GH peaked at 40.9±7.4 ng/ml. GH did not influence circulating levels of total IGFI, C-peptide, insulin or glucose, but caused a further increase in NEFA, glycerol and 3-OH-butyrate levels, indicating enhanced lipolysis and ketogenesis. This effect of GH was much more pronounced during IGF-I: NEFA rose from 702±267 (saline) and 885±236 (IGF-I) to 963±215 (saline) (p〈0.05) and 1815±586 Μmol/l (IGF-I) (p〈0.02), respectively; after 5 h, 3-OH-butyrate rose from 242±234 (saline) and 340±280 (IGF-I) to 678±638 (saline) (p〈0.02) and 1115±578 Μmol/l (IGF-I) (p〈0.02) respectively. After injection of GH, forearm uptake of 3-OH-butyrate was markedly elevated only in the subjects treated with IGF-I: from 44±195 to 300±370 after 20 min (p〈0.03) and to 287±91 nmol · 100 ml−1 · min−1after 120 min (p〈0.02). In conclusion, the lipolytic and ketogenic response to GH was grossly enhanced during IGF-I treatment, and utilization of ketone bodies by skeletal muscle was increased.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Keywords Substrate oxidation ; energy expenditure ; lipolysis ; ketogenesis ; “dawn” phenomenon.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Growth hormone (GH) secretion is suppressed during insulin-like growth factor-I (IGF-I) administration. The aim of the study was to examine whether IGF-I alters the metabolic response to a GH pulse. Seven healthy male subjects (age 27 ± 4 years, BMI 21.8 ± 1.7 kg/m2) were treated with NaCl 0.9 % (saline) or IGF-I (8 μg · kg–1· h–1) for 5 days by continuous subcutaneous infusion in a randomized, crossover fashion while receiving an isocaloric diet (30 kcal · kg–1· day–1). On the third treatment day an intravenous bolus of 0.5 U GH was administered. Forearm muscle metabolism was examined by measuring arterialized and deep venous blood samples, forearm blood flow by occlusion plethysmography and substrate oxidation by indirect calorimetry. IGF-I treatment significantly reduced insulin concentrations by 80 % (p 〈 0.02) and C-peptide levels by 78 % (p 〈 0.02), as assessed by area under the curve. Non-esterified fatty acid (NEFA), glycerol and 3-OH-butyrate levels were elevated and alanine concentration decreased. Forearm blood flow rose from 2.10 ± 0.43 (saline) to 2.79 ± 0.37 ml · 100ml–1· min–1 (IGF-I) (p 〈 0.02). GH-pulse: 10 h after i. v. GH injection serum GH peaked at 40.9 ± 7.4 ng/ml. GH did not influence circulating levels of total IGF-I, C-peptide, insulin or glucose, but caused a further increase in NEFA, glycerol and 3-OH-butyrate levels, indicating enhanced lipolysis and ketogenesis. This effect of GH was much more pronounced during IGF-I: NEFA rose from 702 ± 267 (saline) and 885 ± 236 (IGF-I) to 963 ± 215 (saline) (p 〈 0.05) and 1815 ± 586 μmol/l (IGF-I) (p 〈 0.02), respectively; after 5 h, 3-OH-butyrate rose from 242 ± 234 (saline) and 340 ± 280 (IGF-I) to 678 ± 638 (saline) (p 〈 0.02) and 1115 ± 578 μmol/l (IGF-I) (p 〈 0.02) respectively. After injection of GH, forearm uptake of 3-OH-butyrate was markedly elevated only in the subjects treated with IGF-I: from 44 ± 195 to 300 ± 370 after 20 min (p 〈 0.03) and to 287 ± 91 nmol · 100 ml–1· min–1after 120 min (p 〈 0.02). In conclusion, the lipolytic and ketogenic response to GH was grossly enhanced during IGF-I treatment, and utilization of ketone bodies by skeletal muscle was increased. [Diabetologia (1996) 39: 961–969]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Keywords Prediabetes ; physiological approach ; 24-h profile ; glucose ; insulin ; insulin secretion ; proinsulin ; non-esterified fatty acids ; gut incretin hormones ; intermediary metabolites.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. Insulin resistance is a common feature in relatives of patients with Type II (non-insulin-dependent) diabetes mellitus and abnormalities in beta-cell function can also exist. Insight into non-fasting carbohydrate metabolism in these potentially prediabetic subjects relies almost exclusively on studies in which glucose is infused or ingested or both. We aimed to characterize insulin secretion and aspects of hormonal and metabolic patterns in relatives using a physiological approach. Methods. We examined profiles of insulin, C peptide, proinsulin, gut incretin hormones and fuel substrates in 26 glucose tolerant but insulin resistant (clamp) relatives and 17 control subjects during a 24-hour period including three meals. Results. During the day plasma glucose was slightly raised in relatives (p 〈 0.05). Overall insulin secretion calculated on the basis of C peptide kinetics were increased in relatives (p 〈 0.0005) whereas incremental insulin secretion after all three meals were similar. Peak incremental insulin secretion tended, however, to be reduced in relatives (p 〈 0.10). Despite considerably increased insulin concentrations in relatives (70 %, p 〈 0.001), serum NEFA did not differ. Postprandial proinsulin concentrations (p 〈 0.05), but not proinsulin:insulin ratios, were increased in relatives. After meals concentrations of glucose-dependent-insulinotropic polypeptide (p 〈 0.05) were increased in relatives. Glucagon-like peptide-1 concentrations were similar. Conclusion/interpretation. Several hormonal and metabolic aberrations are present in healthy relatives of Type II diabetic patients during conditions that simulate daily living. Increased concentrations of glucose-dependent-insulinotropic polypeptide could indicate a beta-cell receptor defect for glucose-dependent-insulinotropic polypeptide in the prediabetic stage of Type II diabetes. Incremental insulin secretion after mixed meals appear normal in relatives, although a trend towards diminished peak values possibly signifies early beta-cell dysfunction. [Diabetologia (1999) 42: 1314–1323]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0428
    Keywords: Keywords GLP-1 ; Insulin ; pulsatility ; insulin secretion ; time series ; Type II diabetes ; human.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. The enteric incretin hormone, glucagon-like peptide-1 (GLP-1), is a potent insulin secretagogue in healthy humans and patients with Type II (non-insulin-dependent) diabetes mellitus. In this study we assessed the impact of short-term GLP-1 infusion on pulsatile insulin secretion in Type II diabetic patients. Methods. Type II diabetic patients (n = 8) were studied in a randomised cross-over design. Plasma insulin concentration time series were obtained during basal conditions and during infusion with saline or GLP-1 (1.2 pmol/l · kg–1· min–1) on 2 separate days. Plasma glucose was clamped at the initial concentration by a variable glucose infusion. Serum insulin concentration time series were evaluated by deconvolution analysis, autocorrelation analysis, spectral analysis and approximate entropy. Results. Serum insulin concentrations increased by approximately 100 % during GLP-1 infusion. Pulsatile insulin secretion was increased as measured by secretory burst mass (19.3 ± 3.8 vs 53.0 ± 10.7 pmol/l/pulse, p = 0.02) and secretory burst amplitude (7.7 ± 1.5 vs 21.1 ± 4.3 pmol/l/min, p = 0.02). A similar increase in basal insulin secretion was observed (3.6 ± 0.9 vs 10.2 ± 2.2 pmol/l/min, p = 0.004) with no changes in the fraction of insulin delivered in pulses (0.50 ± 0.06 vs 0.49 ± 0.02, p = 0.84). Regularity of secretion was unchanged as measured by spectral analysis (normalised spectral power: 5.9 ± 0.6 vs 6.3 ± 0.8, p = 0.86), autocorrelation analysis (autocorrelation coefficient: 0.19 ± 0.04 vs 0.18 ± 0.05, p = 0.66) and the approximate entropy statistic (1.48 ± 0.02 vs 1.51 ± 0.02, p = 0.86). Conclusion/interpretation. Short-term stimulation with GLP-1 jointly increases pulsatile and basal insulin secretion, maintaining but not improving system regularity in Type II diabetic patients. [Diabetologia (2000) 43: 583–588]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...