Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 23 (1996), S. 125-134 
    ISSN: 1573-1634
    Keywords: permeability ; upscaling ; flow prediction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract A method for upscaling of permeability in heterogeneous porous media is presented. The upscaled field takes the form K = e Y , where Y, in two dimensions, is a piecewise bilinear function. The method is tested on a number of random permeability fields, with different integral scale/correlation length and variance. The numerical results show that this method conserves much more of the heterogeneous fingering than classical block-based upscaling methods, e.g., geometric mean.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 38 (1995), S. 2017-2032 
    ISSN: 0029-5981
    Keywords: reservoir flow ; non-linear model ; gravity ; operator-splitting ; method of characteristics ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Based on a two-phase fluid model for immiscible displacement in a porous medium, we develop and analyse numerical solution techniques for certain non-linear phenomena. Two different solution strategies for the treatment of gravity effects, which are non-trivial to model by existing solution techniques and may be of great influence in many practical flow situations, are presented. The solution procedures are based on an operator-splitting technique, combining the modified method of characteristics with finite element techniques and adaptive grid refinement.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...