Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: 13C isotope ; changes in soil ; forest clearing ; maize crop ; soil organic carbon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In southwest France, sandy spodosols have developed from Quaternary sandy eolian deposits. On these soils, numerous forest lands have been converted to continuous intensive maize cropping. A chronosequence study is realized by comparing organic C pools and 13C natural abundance of one forested and 6 agricultural sites, whose ages of cultivation range from 4 to 32 yr. δ13C ratio is found to increase with time of cultivation. After 3 decades of intensive maize cropping, about half of the initial organic C content in the forest topsoil layer has disappeared. The fraction of C derived from maize crop increases during the first decades of cultivation, but its level is significantly lower than those observed in other soils, which indicates a high mineralization rate of organic C. In this context, soil characteristics associated to intensive agricultural practices lead to a rapid and large loss of C, whereas inputs from maize seem to have only a very small long-term contribution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...