Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • polygalacturonase  (2)
  • fruit abscission  (1)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 20 (1992), S. 839-848 
    ISSN: 1573-5028
    Keywords: cellulase ; ethylene ; fruit abscission ; leaf abscission ; polygalacturonase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Ethylene-induced abscission in leaf and fruit explants of peach involves different enzymes. In leaves abscission is accompanied by increased occurrence of cellulase forms differing in isoelectric point (pI 6.5 and 9.5). A polypeptide with a molecular mass of 51 kDa gives in a western blot a strong cross-reaction with an antibody raised against a maturation cellulase from avocado fruit. Cellulase activity is also found in abscising fruit explants but the amount is very low compared to that of the leaf explants. A northern analysis with a cellulase clone from avocado reveals the presence of two hybridizing mRNAs with a size of 2.2 kb and 1.8 kb, respectively. The steady-state level of the 2.2 kb mRNA is significantly increased by treatment with ethylene. Polygalacturonases are not detected in abscising leaves, but are strongly induced by ethylene in fruit explants. Of the three forms found, two are exopolygalacturonases while the third is an endoenzyme. Ethylene activates preferentially the endoenzyme and the basic exoenzyme but depresses the acid exopolygalacturonases. A northern analysis carried out with a cDNA coding for tomato endopolygalacturonase shows hybridization only with one endopolygalacturonase mRNA from in the fruit abscission zone. Treatment with ethylene causes an increase in the steady-state level of this mRNA. The differences in the enzyme patterns observed in fruit and leaf abscission zones and a differential enzyme induction suggest the feasibility to regulate fruit abscission in peach with the aid of antisense RNA genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant growth regulation 31 (2000), S. 35-42 
    ISSN: 1573-5087
    Keywords: β-1,4-endoglucanase ; ethylene ; fruit ; gene expression ; polygalacturonase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Fruitlet abscission during fruit development is due to the activation ofpre-differentiated abscission zones (AZs) located between twig andpedicel, and/or pedicel and pericarp. Major advances on biochemicaland molecular aspects are related to β-1,4-endoglucanase (EG) andpolygalacturonase (PG), two cell hydrolases involved in the cell walldisassemblement responsible for fruit shedding. AZ activation isaccompanied by an increase in activity and transcript accumulation ofone or both enzymes. Expression of PG genes specifically related toabscission has been found in tomato flower AZ. In peach, an EG genehighly expressed in leaf and fruitlet AZs has been isolated. AZactivation is preceded by an induction of ethylene biosynthesis,paralleled by a stimulation of ACO activity and transcript accumulation.Ethylene, besides a dramatic stimulation of PG and EG, up or downregulates several other abscission related genes. The specificexpression of genes encoding for ethylene receptors in the AZ wouldsupport the hypothesis that fruitlet AZ specificity may depend on theability of this region to sense ethylene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...