Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of clinical pharmacology 44 (1993), S. 349-355 
    ISSN: 1432-1041
    Keywords: Paroxetine ; Desipramine ; sparteine/debrisoquine ; genetic polymorphism ; drug-drug interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary Nine extensive metabolizers (EMs) and eight poor metabolizers (PMs) of sparteine took a single oral dose of 100 mg of desipramine HCI before and while taking paroxetine 20 mg per day. Before paroxetine, the median of the total desipramine clearance was 7 times higher in EMs than in PMs (102 and 15 l·h−1 respectively). This confirms that desipramine is extensively metabolized via the sparteine/debrisoquine oxidation polymorphism i.e. by CYP2D6. During paroxetine, the median clearances were 22 l·h−1 and 18 l·h−1 in EMs and PMs respectively. The 5-fold decrease in clearance in EMs when desipramine was co-administered with paroxetine confirms that paroxetine is a potent inhibitor of CYP2D6. The lack of effect on clearance in PMs shows that paroxetine is a selective inhibitor of CYP2D6, which is absent from the livers of PMs. Before paroxetine, the median of desipramine clearance via 2-hydroxylation was 40-times higher in EMs than in PMs (56 and 1.4 l·h−1 respectively), but during paroxetine, it was only 2-times higher (6 and 2.9 l·h−1 respectively). The increase in this clearance in PMs suggests that paroxetine is an inducer of the alternative, unidentified P 450(s) which catalyze(s) the formation of 2-OH-desipramine in this phenotype. Before paroxetine, the median amounts of 2-OH-desipramine glucuronide recovered in urine were 69% and 68% of the total recovery of 2-OH-desipramine in urine in EMs and PMs respectively. During paroxetine, the corresponding values were 77% and 84%. This increase in the relative recovery of the glucuronide was statistically significant in both phenotypes, suggesting that paroxetine is a weak inducer of the glucuronidation of 2-OH-desipramine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of clinical pharmacology 37 (1989), S. 155-160 
    ISSN: 1432-1041
    Keywords: imipramine ; desipramine ; quinidine ; sparteine oxidation ; cytochrome P450 isoforms ; genetic polymorphism ; drug interaction ; metabolic clearance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary On separate occasions 6 extensive metabolizers of sparteine took a single oral dose of 100 mg imipramine and desipramine before and during the intake of quinidine sulphate 200 mg/day. During quinidine the total oral clearance of imipramine on average was reduced by 35%, and that of desipramine by 85%. The clearance of imipramine via demethylation was not significantly reduced during quinidine administration, whereas its clearance by other pathways, largely 2-hydroxylation, was reduced by more than 50%. 2-OH-Imipramine and 2-OH-desipramine were detected in plasma before (maximum concentrations 30–100 nmol · l−1) but not during quinidine. It appears that quinidine is a potent inhibitor of the sparteine/debrisoquine oxygenase, P450dbl, which is responsible for the 2-hydroxylation of imipramine and desipramine, but not of the P450 isozyme responsible for the demethylation of imipramine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...