Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2711
    Keywords: force microscopy ; friction ; relaxation ; glass ; gelatin ; polymer ; network
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The scan-velocity dependence of friction force microscopy (FFM) is characterized on nominally-dry gelatin films and related to the rate dependence of dissipative molecular relaxations. For a range of scanning-parameter values the measurement itself affects the frictional characteristics of the films: imparted frictional energy populates molecular conformations from which more dissipative relaxations occur. Variations in frictional dissipation tens of nanometers in lateral size are quantified as histograms of the number of image pixels versus frictional force. Histogram breadth and symmetry apparently reflect the energy dispersion of molecular relaxations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...