Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of thermal analysis and calorimetry 54 (1998), S. 651-657 
    ISSN: 1572-8943
    Keywords: crystallinity ; heat capacity ; PET ; TMDSC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The increment of heat capacity at the glass transition for semi-crystalline poly(ethylene terephthalate) (PET) observed by temperature-modulated differential scanning calorimetry (TMDSC) shows significant deviations from a simple crystalline/amorphous two-phase model. Introduction of a rigid amorphous fraction, which is non-crystalline but which also does not participate in the normal glass transition, allows a much better description of the transition behaviour in semi-crystalline PET. Certain questions arise such as what is the rigid amorphous fraction and over what temperature range do these rigid amorphous segments devitrify? These TMDSC results show that the rigid amorphous component may be treated as an interphase between amorphous and crystalline phases. This interphase does not exhibit a separate glass transition temperature at temperatures above the normal Tg. The suggestion is made that the glass transition of the rigid amorphous component occurs continually between the glass transition temperature of the amorphous phase and up to about 135°C for this particular sample of PET.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of thermal analysis and calorimetry 49 (1997), S. 209-218 
    ISSN: 1572-8943
    Keywords: glass transition ; heat capacity ; modulated DSC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Modulated-temperature differential scanning calorimetry was used to measure the glass transition temperature,T g, the heat capacity relaxation in the glassy state and the increment of heat capacity, δCp, in the glass transition region for several polymers. The differential of heat capacity with respect to temperature was used to analyseT g and δCp simply and accurately. These measurements are not affected by complex thermal histories.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...