Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 32 (1994), S. 1817-1827 
    ISSN: 0887-624X
    Keywords: polymer blends ; hydrogen bonding ; miscibility ; phase behavior ; equilibrium constants ; hexafluoroisopropanol groups ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Dimensionless equilibrium constants describing the self-association of the hexafluoro-2-alkyl-2-propanol group have been determined from infrared spectroscopic data. Corresponding values of these equilibrium constants for a fully modified polyisoprene containing the hexafluoroisopropanol group (PHFPI) were calculated by taking into account differences in the molar volume of the model and the specific repeat unit of the polymer. Equilibrium constants describing the inter-association of PHFPI with methacrylate, acrylate, and acetoxy type carbonyl groups were obtained from spectroscopic studies of miscible PHFPI blends with poly(n-butyl methacrylate), poly(methyl acrylate), and an ethylene-co-vinyl acetate copolymer containing 70 wt% vinyl acetate. The set of equilibrium constant values were then used to calculate theoretical miscibility windows for the complete range of PHFPI blends with poly(n-alkyl methacrylate)s and four copolymers, ethylene-co-methyl methacrylate, styrene-co-methyl acrylate, ethylene-co-methyl acrylate, and ethylene-co-vinyl acetate. Experimental infrared studies confirm the general validity of the predicted miscibility windows. © 1994 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1579-1590 
    ISSN: 0887-6266
    Keywords: infrared spectroscopy ; polymer blends ; poly(vinyl cinnamate) ; UV curing ; hydrogen bonds ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The results of an infrared spectroscopic characterization of poly(vinyl cinnamate) (PVCIN) and its blends with poly(4-vinyl phenol) (PVPh) are reported before and after photo-crosslinking the PVCIN by exposure to UV radiation. The purpose of this article is to demonstrate methodology, and it is shown that quantitative analysis of the fraction of unsaturated (—C=C—) double bonds, “free” (non-hydrogen bonded) and hydrogen bonded unsaturated (—CO—C=C—) and saturated (—CO—C—C—) acetoxy carbonyl groups is feasible in these blends as a function of UV exposure time. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1579-1590, 1998
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...