Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0899-0042
    Keywords: high-performance liquid chromatography ; chiral stationary-phase ; flavin-containing monooxygenase ; N-ethyl-N-methylaniline N-oxide, Chiralcel OD ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The prochiral tertiary amine N-ethyl-N-methylaniline (EMA) is known to be metabolically N-oxygenated in vitro with microsomal preparations. This biotransformation is thought to be mediated predominantly by the flavin-containing monooxygenase (FMO) enzyme system. Microsomal N-oxygenation of EMA is known to be stereoselective and varies between species. In order to further characterise this metabolic transformation, we have examined the in vitro metabolism of EMA using purified porcine hepatic FMO. Following incubation of EMA with purified FMO, EMA N-oxide, the only metabolite detected, was found to be produced stereoselectively [ratio (-)-(S):(+)-(R), ca. 4:1]. The enantiomeric ratio of the N-oxide product did not change markedly with respect to time, enzyme or substrate concentration. Determination of the kinetics of formation of the N-oxide indicated a single affinity for the prochiral substrate with differential rates of formation of the enantiomers. The extent of EMA N-oxide formation was shown to be affected by activators and inhibitors of FMO and pH, but its stereoselectively was unaltered. © 1994 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0899-0042
    Keywords: pargyline N-oxide ; chiral nitrogen centre ; flavin-containing monooxygenase ; chiral stationary phase ; high-performance liquid chromatography ; Chiralcel OD ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The monoamine oxidase inhibitor pargyline (N-benzyl-N-methyl-2-propynylamine) is known to undergo extensive in vitro microsomal N-oxidation, thought to be mediated predominantly by the flavin-containing monooxygenase (FMO) enzyme system. Formation of the pargyline N-oxide (PNO) metabolite creates a chiral nitrogen centre and thus asymmetric oxidation is possible. This study describes a reverse-phase high-performance liquid chromatographic (HPLC) method for the quantitation of PNO and a chiral-phase HPLC method for the determination of the enantiomeric ratio of PNO. In vitro microsomal N-oxidation of pargyline was found to be highly steroselective in a number of species, with the (+)-enantiomer being formed preferentially. This metabolic transformation was stereospecific when purified porcine hepatic FMO was used as the enzyme source. © 1994 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...