Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 1456-1458 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A material for thermally stable self-aligned silicide technologies has been developed using sequentially deposited Ti/Ta on polycrystalline silicon. At lower annealing temperatures below 1000 °C two separate phases were found by cross-sectional transmission electron microscopy to exist in the form of bilayer TiSi2/TaSi2. The formation of a ternary phase (TiTa)Si2 has been observed at a higher temperature of 1000 °C. Consequently, the ternary (TiTa)Si2 layer could be kept extremely flat, with a sheet resistance of 5 Ω/(D'Alembertian), even after 1000 °C, 30 min annealing. Cross-sectional transmission electron micrographs of the structure clearly reveal that no agglomeration occurs during the heat treatment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 297-299 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The formation of titanium silicides on Si implanted with different BF2+ dosages has been studied by secondary ion mass spectrometry and transmission electron microscopy measurements. The thickness of the silicide layer formed in the temperature ranging from 600 to 800 °C has been investigated as a function of the implanted BF2+ dosage up to 1×1016 cm−2. Annealing at 700 °C results in conversion of the titanium film into predominantly C49 TiSi2, and most of it is transformed into the C54 phase at 800 °C or higher, resulting in a lower sheet resistance (16 μΩ cm). The titanium silicide thickness formed after the rapid thermal annealing (RTA) treatment depends on the implanted BF2+ dosage, caused by the native oxide enhanced by increased damage. Boron is redistributed into the silicide layer up to the solid solubility limit during annealing, leading to an accumulation at the silicide/silicon interface. The lowest contact resistance (with a size of 0.7 μm×0.7 μm) of 35 Ω is obtained at the annealing temperature of 700 °C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A noninductive current drive concept, based on internal pressure-driven currents in a low-aspect-ratio toroidal geometry, has been demonstrated on the Current Drive Experiment Upgrade (CDX-U) [Forest et al., Phys. Rev. Lett. 68, 3559 (1992)] and further tested on DIII-D [in Plasma Physics and Controlled Nuclear Fusion Research, 1986, Proceedings of the 11th International Conference, Kyoto (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159]. For both experiments, electron cyclotron power provided the necessary heating to breakdown and maintain a plasma with high-βp and low collisionality (εβp∼1, ν*≤1). A poloidal vacuum field similar to a simple magnetic mirror is superimposed on a much stronger toroidal field to provide the initial confinement for a hot, trapped electron species. With application of electron cyclotron heating (ECH), toroidal currents spontaneously flow within the plasma and increase with applied ECH power. The direction of the generated current is independent of the toroidal field direction and depends only on the direction of the poloidal field, scaling inversely with magnitude of the later. On both CDX-U and DIII-D, these currents were large enough that stationary closed flux surfaces were observed to form with no additional Ohmic heating. The existence of such equilibria provides further evidence for the existence of some type of bootstrap current. Equilibrium reconstructions show the resulting plasma exhibits properties similar to more conventional tokamaks, including a peaked current density profile which implies some form of current on axis or nonclassical current transport.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 63 (1992), S. 4747-4749 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Magnetic diagnostics are used to reconstruct current density profiles in noninductively driven plasmas in the CDX-U tokamak. The boundary magnetic fields are measured by 32 pickup coils and three flux loops attached at different poloidal positions inside the CDX-U vessel; in addition, internal magnetic probes are also used. Significant eddy currents are measured on the thick aluminum vessel and accounted for in the analysis. Two-dimensional current density distributions and magnetic flux contours are reconstructed from these measurements using a least-square-error technique. A finite element description of plasma currents is useful for general magnetic geometries which evolve from open field lines to closed flux surfaces. By increasing the number of elements, a converged current density distribution is obtained.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 966-972 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In search of a method to generate a radial electric field in tokamak plasmas, an experimental study has been performed to investigate the possibility of inducing radial electrical current. An external coil array has been used to create a local magnetic ripple well and the electron cyclotron resonance heating (ECH) has been used to trap some electrons that will then be subject to rapid vertical drifts into the plasma. Using a simplified experimental arrangement with only a toroidal magnetic field, an ECH-driven radial electrical current has been observed. The ECH-driven elecron temperature anisotropy, which is necessary for ripple trapping and electron drifts, has been determined by several different methods. The perpendicular temperature can be shown to be as large as 11 times the parallel temperature, which should yield a significant amount of ripple trapping and radial current. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Neural network is considered as a parameter estimation tool in plasma controls for next generation tokamak such as ITER. The neural network has been reported to be so accurate and fast for plasma equilibrium identification that it may be applied to the control of complex tokamak plasmas. For this application, the reliability of the conventional neural network needs to be improved. In this study, a new idea of double neural network is developed to achieve this. The new idea has been applied to simple plasma position identification of KSTAR tokamak for feasibility test. Characteristics of the concept show higher reliability and fault tolerance even in severe faulty conditions, which may make neural network applicable to plasma control reliably and widely in future tokamaks. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 68 (1997), S. 689-689 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A multipass/multipulse Thomson scattering system has been implemented on CDX-U in collaboration with the Ioffe Institute, St. Petersburg. The system consists of a low energy (1.5– 2.5 J), passively Q-switched ruby laser, and a multipass optical cavity enclosing the plasma. Multiple reflections of the beam within the cavity increase by about an order of magnitude the number of scattered photons, allowing temperature density to be measured with good accuracy even at very low plasma density. By feeding the returned beam back into the laser, the system can deliver several pulses over a 1 ms period. However, the experiments on CDX-U show that a mechanical shock wave reaching the multipass system affects the feedback and laser output per pulse drops significantly. Therefore we operate the system by fine tuning the laser cavity, so that output is practically independent of feedback from multipass cavity. Also, by optimizing the transmission of the passive Q-switch and the pumping power, we obtain that laser output is concentrated in single large pulse of 2–2.5 J energy. We achieve circulating energy in the plasma in excess of 12 J per pulse, while minimizing at the same time stray light. As shown by results from CDX-U, this enables in some cases better than 10% accuracy, despite relatively low plasma density conditions. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 71 (2000), S. 943-945 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Multicusp volume ion sources with radio frequency (rf) antenna are well accepted negative ion sources except for the contamination problem from the rf antenna immersed in the plasma. The transformer coupled plasma (TCP) developed as high-density plasma sources for processing of microelectronics is newly recognized as a good candidate for negative ion sources without this contamination problem. High-density plasmas can be generated with the rf antenna outside of the plasma chamber separated by a dielectric window. Also, this high-density, high-temperature, heating region can be well separated from the negative ion extraction region where low electron temperatures are required. Moreover, TCP does not require a magnetic field for plasma generations; electron filtering with transverse magnetic field is compatible. Feasibility of the TCP negative ion source has been confirmed with plasma characteristics. Conceptual design of a new novel ion source based on the TCP source is performed. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 68 (1997), S. 1055-1058 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Due to their highly shaped plasma and possible poloidal asymmetry in impurity concentration, spherical Tokamaks will require tomographic reconstruction of local emissivities to assess impurity content and transport. To collect in an effective manner the data required for such reconstruction, we develop arrays of high throughput "mini-monochromators" using extreme ultraviolet multilayer mirrors as dispersive elements and filtered surface barrier diodes as detectors. We discuss monochromator optimization and show that by working at near normal incidence throughput and spectral resolution are simultaneously maximized. A system proposed for tomographic reconstruction of C V and C VI resonance emission at 33.7 and 40.5 Å respectively, achieves 0.9 Å spectral resolution, 2 cm spatial resolution, and 0.2 ms temporal resolution, together with good sensitivity and background rejection. Preliminary results obtained from CDX-U low aspect ratio tokamak are also presented. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 68 (1997), S. 986-989 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Using a rotatable three-electrode Mach probe at the outer edge region of the plasma, preliminary observations indicate the existence of a toroidal rotation in the ion flow direction (of the toroidal current) with no comparable poloidal rotation. This rotation cannot be in the direction of the magnetic field, because of the large pitch of the local magnetic field. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...