Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: signal transduction ; stomach ; hormones ; phospholipase C ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In gastric chief cells, agents that activate protein kinase C (PKC) stimulate pepsinogen secretion and phosphorylation of an acidic 72-kDa protein. The isoelectric point and molecular mass of this protein are similar to those for a common PKC substrate; the MARCKS (for Myristoylated Alanine-Rich C Kinase Substrate) protein. We examined expression and phosphorylation of the MARCKS-like protein in a nearly homogeneous suspension of chief cells from guinea pig stomach. Western blotting of fractions from chief cell lysates with a specific MARCKS antibody resulted in staining of a myristoylated 72-kDa protein (pp72), associated predominantly with the membrane fraction. Using permeabilized chief cells. we examined the effect of PKC activation (with the phorbol ester PMA), in the presence of basal (100 nM) or elevated cellular calcium (1 μM), on pepsinogen secretion and phosphorylation of the 72-kDa MARCKS-like protein. Secretion was increased 2.3-, 2.6-, and 4.5-fold by incubation with 100 nM PMA, 1 μM calcium, and PMA plus calcium, respectively. A PKC inhibitor (1 μM CGP 41 251) abolished PMA-induced secretion, but did not alter calcium-induced secretion. This indicates that calcium-induced secretion is independent of PKC activation. Chief cell proteins were labeled with 32P-orthophosphate and phosphorylation of pp72 was detected by autoradiography of 2-dimensional polyacrylamide gels. In the presence of basal calcium PMA (100 nM) caused a 〉 two-fold increase in phosphorylation of pp72. Without PMA, calcium did not alter phosphorylation of pp72. However, 1 μM calcium caused an approx. 50% attenuation of PMA-induced phosphorylation of pp72. Experiments with a MARCKS “phosphorylation/calmodulin binding domain peptide” indicated that calcium/calmodulin inhibits phosphorylation of pp72 by binding to the phosphorylation/calmodulin binding domain and not by inhibiting PKC activity. These observations support the hypothesis that, in gastric chief cells, interplay between calcium/calmodulin binding and phosphorylation of a common domain on the 72-kDa MARCKS-like protein plays a role in modulating pepsinogen secretion. J. Cell. Biochem. 64:514-523. © 1997 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 48 (1992), S. 107-113 
    ISSN: 0730-2312
    Keywords: pepsinogen secretion ; signal transduction ; stomach ; translocation ; hormones ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Stimulation of chief cells with carbachol or cholecystokinin (CCK) results in the production of inositol trisphosphate (IP3) and diacylglycerol (DAG). Although IP3 increases cell calcium concentration, thereby stimulating pepsinogen secretion, the role of DAG and its target, protein kinase C (PKC), is less clear. To examine the relation between the cellular distribution of PKC activity and pepsinogen secretion, we determined PKC activity in cytosolic and membrane fractions from dispersed chief cells from guinea pig stomach. To validate our assay, we studied the actions of the phorbol ester PMA. PMA caused a rapid, dose-dependent, 6-fold increase in pepsinogen secretion and membrane-associated PKC activity. Similarly, dose-response curves for pepsinogen secretion and the increase in membrane-associated PKC activity induced by a membrane-permeant DAG (1-oleoyl-2-acetylglycerol) were superimposable. In contrast, CCK (0.1 nM to 1.0 μM) and carbachol (0.1 μM to 1.0 mM) caused a 4-fold increase in pepsinogen secretion, but did not alter the distribution of PKC activity. These results indicate that in gastric chief cells, PMA-and DAG-induced pepsinogen secretion is accompanied by increased membrane-associated PKC activity. However, the cellular distribution of PKC activity is not altered by CCK or carbachol.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...