Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: human prostatic cancer cell (PC-3) ; osteoblastic cell differentiation ; bone nodule formation ; alkaline phosphatase activity ; osteocalcin ; osteopontin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human prostatic carcinoma frequently metastasizes to bone tissue and activates bone metabolism, especially bone formation, at the site of metastasis. It has been reported that an extract of prostatic carcinoma and conditioned medium (CM) of a human prostatic carcinoma cell line, PC-3, established from a bone metastastic lesion, stimulate osteoblastic cell proliferation. However, there is little information about the effect of PC-3 CM on the differentiation of osteoblastic cells. In this study, we investigated the effect of PC-3 CM on the differentiation of two types of osteoblastic cells, primary fetal rat calvaria (RC) cells containing many undifferentiated osteoprogenitor cells, and ROS 17/2.8, a well-differentiated rat osteosarcoma cell line. PC-3 CM inhibited bone nodule formation and the activity of alkaline phosphatase (ALPase), an osteoblastic marker enzyme, on days 7, 14, and 21 (RC cells) or 3, 6, and 9 (ROS 17/2.8 cells) in a dose-dependent manner (5-30% CM). However, the CM did not affect cell proliferation or cell viability. PC-3 CM was found to markedly block the gene expression of ALPase and osteocalcin (OCN) mRNAs but had no effect on the mRNA expression of osteopontin (OPN), the latter two being noncollagenous proteins related to bone matrix mineralization. These findings suggest that PC-3 CM contains a factor that inhibits osteoblastic cell differentiation and that this factor may be involved in the process of bone metastasis from prostatic carcinoma. J. Cell. Biochem. 67:248-256, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...