Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2711
    Keywords: friction modifiers ; thin film lubrication ; nanorheology ; molecular tribology ; surface forces apparatus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Dilute solutions of two polar end‐functionalized linear alkanes (1‐hexadecylamine and palmitic acid), each dissolved in tetradecane, were confined between two mica surfaces and investigated using a surface forces apparatus modified to study shear nanorheology. These two solutions showed similar nanorheological properties that differed from those observed for pure n‐alkanes. In static measurements, a “hard wall”, rather than an oscillatory force, was observed as a function of film thickness. The polar alkane component formed a weakly adsorbed single layer at each mica surface, disrupting the layered structures found in neat n‐tetradecane. In dynamic experiments at low shear amplitude, the storage modulus G' exceeded the loss modulus G" at low frequencies; above some characteristic frequencies G' increased such that g' ≈ G", indicating significantly more energy loss through viscous modes at higher frequency. When the amplitude was varied at fixed frequency, no stick–slip was observed and the limiting value of the shear stress at high effective shear rate was an order of magnitude less than for unfunctionalized n‐alkanes at similar loads. Together, these results show that the addition of a small amount of polar alkane component, by disrupting the layered structures that would have been formed in the neat n‐alkane, is effective in suppressing static friction and reducing kinetic friction in the boundary lubrication regime.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Tribology letters 5 (1998), S. 81-88 
    ISSN: 1573-2711
    Keywords: thin film lubrication ; nano‐rheology ; molecular tribology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This review article summarizes recent progress in investigation of nano‐rheology and thin film lubrication, as well as their contributions to conventional tribology. As the thickness of a lubricating film becomes comparable to molecular dimensions, a lubricant confined between solid walls undergoes a dramatic transition in its rheological properties and physical state, including the formation of ordered structure, enhanced viscosity and slow relaxation, glass transition or solidification, and consequent stick‐slip motion. As a result, it is recognized that there is special regime between EHL and boundary lubrication, identified as thin film lubrication, where lubricant flow and hydrodynamics are still in action but behave differently from expectations of the classical theory. Generalized theories of thin film lubrication are under development. Microscopic studies of thin film lubrication provide a solid theoretical basis to the development of high‐tech and micro devices, the understanding of lubrication failure, the generalization of classical lubrication theory, and friction control and interface design.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 2961-2968 
    ISSN: 0887-6266
    Keywords: anchored coils ; hydrodynamic thickness ; surface forces apparatus ; interfacial rheology ; interface ; viscosity ; theta solvent ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We study the drainage of a near-theta solvent through densely grafted polymer layers and compare to recent notions that these layers display little permeability to solvent flow at surface separations less than a “hydrodynamic thickness.” The solvent is trans-decalin (a near-theta solvent at the experimental temperature of 24°C). The polymer is polystyrene (PS) end-attached to two opposed mica surfaces via the selective adsorption of the polyvinylpyridine (PVP) block of a PS-PVP diblock copolymer. The experimental probe was a surface forces apparatus modified to apply small-amplitude oscillatory displacements in the normal direction. Out-of-phase responses reflected viscous flow of solvent alone - the PS chains did not appear to contribute to dissipation over the oscillation frequencies studied. The value of the hydrodynamic thickness (RH) was less than the coil thickness (Lo) measured independently from the onset of surface-surface interactions in the force-distance profile, implying significant penetration of the velocity field into the polymer layer. As the surface-surface separation was reduced from 3Lo to 0.3Lo, the apparent hydrodynamic thickness (RH*) decreased monotonically to values RH* ≪ RH. Physically, this indicates that the “slip plane” moved progressively closer to the solid surfaces with decreasing surface-surface separation. This was accompanied by augmentation of the effective viscosity by a factor of up to approximately 5, indicating somewhat diminished permeability of solvent through the overlapping polymer layers. Similar results hold for the flow through surface-anchored polymers in a good solvent. It is interesting to note the strong stretching of densely end-grafted polymers in a theta solvent. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2961-2968, 1997
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...