Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0417
    Keywords: saline lake deposits ; paleoclimate ; paleotemperature ; hydrohalite ; halite fluidinclusions ; stable isotopes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Saline lake deposits are arguably the best source of mid- to low-latitude terrestrial paleoclimate data. Alternating clastic sediments and evaporites of different chemical composition have long been recognized as sensitive records of changes in inflow and aridity related to a variety of climate parameters. Several sources of paleotemperature information from a halite-bearing saline lake deposit are described here – pseudomorphs of a cold-temperature evaporite mineral, homogenization temperatures of fluid inclusions in halite, and stable-isotope compositions of fluid inclusions in halite. Examples of these paleoclimate data come from analysis of the lower half of a 185-m core drilled in Pleistocene saline lake deposits at Death Valley, California. Daily and seasonal temperature variations in saline lake waters create conditions for the appearance and disappearance of temperature-dependent mineral phases. In the Death Valley core, hexagonal-shaped halite crystals, probable pseudomorphs of the cold-temperature hydrous mineral, hydrohalite (NaCl•2H2O), provide evidence of brine temperatures below about 0 °C. Homogenization temperatures of fluid inclusions in primary halite offer an actual (not proxy) record of surface-brine temperatures. Samples with primary fluid-inclusion textures are carefully selected and handled, and data are collected from single-phase aqueous-brine inclusions chilled to nucleate vapor bubbles. Temperature variations are observable at scales of individual halite crystals (hours to days), single halite beds (weeks to months or years), and multiples of beds to entire facies (hundreds to tens of thousands of years). A δ18O/δD stable isotope record from the minute quantities of brines in fluid inclusions in halite is accessible using a method recently developed at the University of Calgary. The stable isotope record from the Death Valley core, a complex response to climate variables including temperature, humidity, storm patterns or seasons, and inflow sources, compliments and expands the interpretation emerging from the stratigraphy and homogenization temperatures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...