Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3592
    Keywords: homogenization, high-pressure ; cell disruption ; inclusion bodies ; size distribution ; centrifuge, analytical ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The high-pressure homogenization of Escherichia coli, strain JM101, containing inclusion bodies of recombinant porcine somatotropin was investigated. A novel technique employing an analytical disc centrifuge was used to monitor the disruption. This a direct technique which measures cell disintegration rather than soluble protein release. The technique is particularly suited to measurements where the disruption approaches 100%. The disk centrifuge provides a size distribution of the homogenate, and furnishes evidence for the preferential disruption of larger cells. For E. coli containing inclusion bodies, and increase in the cell feed concentration from 145 g/L (wet weight) to 330 g/L resulted is poorer homogenization. Poorer disruption was also obtained by lowering the feed temperature from 20°C to 5°C. Only slight variations in performance were obtained by increasing the feed pH from 7.5 to 9.0 or by storing the feed at 4°C for 24 h prior to disruption. Comparison with uninduced E. coli strain JM101, showed that the disruption obtained is higher for bacteria containing a recombinant inclusion body.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 381-386 
    ISSN: 0006-3592
    Keywords: inclusion bodies ; recombinant protein ; IGF-I ; urea ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A method is presented for the direct extraction of the recombinant protein Long-R3-IGF-I from inclusion bodies located in the cytoplasm of intact Escherichia coli cells. Chemical treatment with 6M urea, 3 mM EDTA, and 20 mM dithiothreitol (DTT) at pH 9.0 proved an effective combination for extracting recombinant protein from intact cells. Comparable levels of Long-R3-IGF-I were recovered by direct extraction as achieved by in vitro dissolution following mechanical disruption. However, the purity of directly extracted recombinant protein was lower due to contamination by bacterial cell components. The kinetics of direct extraction are described using a first-order equation with the time constant of 3 min. Urea appears important for permeabilization of the cell and dissolution of the inclusion body. Conversely, EDTA is involved in permeabilization of the cell wall and DTT enhances protein release. pH proved to be important with lower levels of protein release achieved at low pH values (〈9). Cell concentration also had a minor effect on Long-R3-IGF-I release and caused an observable increase in viscosity. Advantages of the direct extraction method include its speed, simplicity, and efficiency at releasing product. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57:381-386, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...