Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 40 (1997), S. 2791-2805 
    ISSN: 0029-5981
    Keywords: finite element methods ; unbounded domains ; acoustics ; Lagrange multipliers ; absorbing boundary conditions ; infinite elements ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: We develop formulations for finite element computation of exterior acoustics problems. A prominent feature of the formulations is the lack of integration over the unbounded domain, simplifying the task of discretization and potentially leading to numerous additional benefits. These formulations provide a suitable basis for hybrid asymptotic-numerical methods in scattering, non-reflecting boundary conditions and infinite elements. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 41 (1998), S. 1105-1131 
    ISSN: 0029-5981
    Keywords: infinite elements ; unbounded domains ; acoustics ; finite element methods ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A novel approach to the development of infinite element formulations for exterior problems of time-harmonic acoustics is presented. This approach is based on a functional which provides a general framework for domain-based computation of exterior problems. Special cases include non-reflecting boundary conditions (such as the DtN method). A prominent feature of this formulation is the lack of integration over the unbounded domain, simplifying the task of discretization. The original formulation is generalized to account for derivative discontinuities across infinite element boundaries, typical of standard infinite element approximations. Continuity between finite elements and infinite elements is enforced weakly, precluding compatibility requirements. Various infinite element approximations for two-dimensional configurations with circular interfaces are presented. Implementation requirements are relatively simple. Numerical results demonstrate the good performance of this scheme. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...