Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Non-obese diabetic mice ; diabetes mellitus ; insulin release ; glucose oxidation ; pancreatic islets ; T lymphocytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Pancreatic islets isolated from non-obese diabetic (NOD) mice, all of which have insulitis, exhibit an impaired glucose metabolism. In order to investigate the role of infiltrating lymphocytes for this altered metabolism, we injected 12- to 13-week-old female NOD mice with monoclonal antibodies directed against either the αβ-T cell receptor, CD4+ or CD8+ T cells. Control NOD mice were injected with normal rat IgG or with the vehicle (phosphate buffered saline) alone. Injection of the three different monoclonal antibodies markedly reduced the mononuclear cell infiltration. An intravenous glucose tolerance test showed no differences between the groups. Islet insulin release in response to glucose was similar in all groups. In contrast, islets isolated from the control NOD mice with insulitis showed a high basal (1.7 mmol/l glucose) glucose oxidation rate and a small increase in the glucose oxidation rate in response to a high glucose concentration (16.7 mmol/l glucose). The monoclonal antibodies counteracted the elevated basal glucose oxidation rate of the islets. Parallel studies of stimulated mononuclear cells suggested that the contribution of glucose oxidized by islet-infiltrating lymphocytes could only partially explain the observed alterations in NOD mouse islet metabolism. Culture of islets obtained from NOD mice in the presence of the cytokine interleukin-1 β induced a similar pattern of glucose metabolism as seen earlier in IgG or phosphate-buffered saline treated control NOD mice. In conclusion, alterations in the glucose oxidation rates seem to be an early sign of disturbance in islets isolated from NOD mice. These early alterations in glucose metabolism can be reversed in vivo by monoclonal antibodies directed against effector lymphocytes. This suggests that the infiltrating mononuclear cells can induce reversible alterations in pancreatic Beta-cell function which may precede impaired insulin secretion, Beta-cell destruction and overt diabetes mellitus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Glucose ; Type 1 (insulin-dependent) diabetes mellitus ; insulin release ; NOD mice ; pancreatic islets ; tissue culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the early stages of Type 1 (insulin-dependent) diabetes mellitus patients present a deficient insulin response to glucose. The reasons for this defective response are unknown, but it has been suggested that it reflects a deleterious effect of excessive glucose stimulation on a reduced Beta-cell mass. Female non-obese diabetic (NOD) mice from our colony, at the age of 12–13 weeks, have a normal basal glycaemia but an impaired intravenous glucose tolerance test, insulitis and a defective insulin response to glucose. In order to characterize the potential effect of glucose on the Beta cells at that “pre-diabetic” stage, pancreatic islets were isolated from 12–13 week old female NOD mice. Immediately after isolation (day 0) the NOD islets displayed a defective insulin response to an acute stimulation with 16.7 mmol/l glucose. After seven days in culture at both 11 and 28 mmol/l glucose these islets showed an increased insulin release in response to an acute glucose stimulation. This increase was more pronounced in the islets cultured at 28 mmol/l glucose. Experiments performed in parallel, using islets obtained from a non-diabetes prone strain of mice (Naval Medical Research Institute, NMRI) showed that these islets had a similar insulin release in response to glucose both on day 0 and after seven days in culture at 11 mmol/l glucose. The insulin mRNA levels of NOD islets did not change over one week in culture at 11 or 28 mmol/l glucose, but culture at the high glucose concentration induced a decrease in the islet insulin content. The present data show that culture at high glucose concentrations does not impair the function of islets isolated from NOD mice. These observations make excessive glucose stimulation, as a single factor, an unlikely explanation for the defective insulin release observed in NOD islets in the “prediabetic” period.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Pancreatic islets ; insulin release ; interleukin-1β ; glucose metabolism ; amino acid metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Acute exposure of pancreatic islets to interleukinl-1β results in an increase in insulin release, while an extension of the exposure time induces a functional suppression and eventually, destruction of the B-cells. We have recently suggested that the interleukin-1β induced inhibition of islet function is mediated through an impairment in oxidative metabolism. The aim of the current study was to investigate if the acute, stimulatory effects of interleukin-1β on islet function could also be related to changes in the substrate metabolism. For this purpose, rat islets were exposed for 90–120 min to 30 pmol/l human recombinant interleukin-1β (biological activity of 2.5 U/ml) and their function and metabolism characterized during this period. The cytokine did not increase insulin release in the presence of 1.7 or 5.5 mmol/l glucose but in both the presence of 16.7 mmol/l glucose or 10 mmol/l leucine + 2 mmol/l glutamine there was a 50% increase in insulin release. Interleukin-1β exposure increased the oxidation of D-[U-14C]glucose at 5.5 mmol/l glucose by 25% and at 16.7 mmol/l glucose by 60%. Carbohydrate and amino acid metabolism were further examined in the presence of D-[5-3H] glucose, D-[6-14C]glucose, [1-14C]pyruvate, L-[U-14C]glutamine, L-[U-14C]leucine and L-[1-14C]leucine. There was no difference between control islets and interleukin-1β exposed islets in terms of D-[5-3H]glucose utilization or [1-14C]pyruvate decarboxylation, but the oxidation of D-[6-14C]glucose was increased by 64% in the interleukin-1β exposed islets. There was also an interleukin-1β induced 45–60% increase in the decarboxylation of L-[1-14C]leucine and oxidation of L-[U-14C]leucine and L-[U-14C]glutamine, all intramitochrondrial events. The stimulation of insulin release by interleukin-1β in the presence of 16.7 mmol/l glucose was abolished in islets incubated in Ca2+ depleted medium, but the rate of D-[6-14C] glucose oxidation remained elevated (47% increase at 16.7 mmol/l glucose). These data indicate an increase in substrate metabolism at the mitochondrial level during acute exposure of rat pancreatic islets to interleukin-1β. The increase in oxidative events can explain the observed interleukin-1β induced increase in insulin release during glucose stimulation. Furthermore, these findings raise the possibility that mitochondria are primary targets of interleukin-1β action in the B-cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...