Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 18 (1982), S. 295-314 
    ISSN: 1573-4889
    Keywords: Nickel-manganese alloys ; oxidation ; solid solution scales ; internal oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Ni-Mn alloys containing up to 38% Mn have been oxidized in pure oxygen between 873 and 1273 K and the parabolic rate constants measured. The scale morphologies and oxide compositions are interpreted in terms of modifications to the scale on pure Mn caused by the presence of Ni. The scales are composed predominantly of two layers at all temperatures, giving the sequences of phases alloy/cubic monoxide (Ni, Mn)O/ternary spinel, with the cubic (Ni, Mn)O layer always having the greater thickness. There is limited evidence for a third, very thin, outer layer in the scales on all alloys at 873 K and for Ni-38%Mn at 1073 K, which is tentatively considered to be Mn2O3, giving layers in the order alloy/cubic monoxide/ternary spinel/Mn2O3, by analogy with the scale formed on pure Mn. The distribution of the alloy components in the scale is discussed in relation to the Ni-Mn-O phase diagram and in terms of recent theoretical treatments of solid solution scale formation on binary alloys, as far as the available diffusion data allow. The occurrence of internal and intergranular oxidation and the formation of a Mn-depleted zone coincident with the band of uniform internal oxide are considered briefly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 23 (1985), S. 77-106 
    ISSN: 1573-4889
    Keywords: cobalt-chromium ; oxidation ; internal oxidation ; annealing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The influence of an initial preinternal oxidation treatment in Co/CoO on the subsequent oxidation behavior of a series of dilute Co-Cr alloys (containing 0–1.5 wt. % Cr) in 105 and 103 Pa oxygen at 1473–1623 Khas been investigated. Particular emphasis has been placed on determining the solubility and mobility of Cr3+ ions in CoO. Use has been made of subsequent annealing in argon $$(p_{O_2 } - 10^{ - 1} {\text{ }}Pa)$$ .
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 10 (1976), S. 163-187 
    ISSN: 1573-4889
    Keywords: alumina ; growth mechanism ; scale adhesion ; yttrium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The oxidation behavior of an Fe-27%Cr-4%Al alloy and similar alloys containing 0.023% and 0.82% Y in 1 atm oxygen at 1200°C has been examined. The oxide formed on the yttrium-free alloy develops a highly convoluted configuration, apparently resulting from lateral growth of the oxide. The latter leads to oxide detachment from the alloy at temperature and extensive spalling during cooling. It is postulated that lateral growth results from the formation of oxide within the existing oxide layer by reaction between oxygen diffusing inward down the oxide grain boundaries and aluminum diffusing outward through the bulk oxide. Additions of yttrium to the alloy apparently prevent the formation of oxide within the oxide layer, the oxide-forming reaction occurring as the alloy-oxide interface. Thus lateral growth is prevented and spalling during cooling does not occur. Secondary advantages conferred by the addition of 0.82% Y to the alloy are the prevention of void formation at the alloy-oxide interface, the avoidance of alloy grain growth during oxidation, and the creation of an oxide “keying” or “pegging” effect.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 14 (1980), S. 217-234 
    ISSN: 1573-4889
    Keywords: alumina ; transient oxidation ; yttrium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The development ofthe oxides on Fe-14%Cr-4%Al, Fe-27%Cr-4%Al, and similar alloys containing 0.008% Y, 0.023% Y, and 0.8% Y has been investigated during the early stages of oxidation in 1 atm oxygen at 1000 and 1200°C. In all cases, a steady-state α-Al2O3layer is established rapidly, after some initial formation of transient oxides rich in iron and chromium. For the yttrium-free alloys the steady-state situation is achieved more rapidly for the higher chromium-containing alloy and at the higher temperature. The amount of transient oxide formed is also determined by the specimen surface topography since the development of the α-Al2O3 layer is less rapid at the base of alloy asperities than at a flat alloy-oxide interface. Following establishment of the complete α-Al2O3layer, the oxide develops a convoluted oxide morphology at temperature, due to high compressive growth stresses in the oxide. These arise following reaction between oxygen ions diffusing inward down the oxide grain boundaries and aluminum ions diffusing outward through the bulk oxide. This results in lateral growth of the oxide and plastic deformation and movement of the alloy in a direction parallel to the alloy-oxide interface. The addition of yttrium to the alloys promotes the selective oxidation of aluminum. Also, the yttrium is incorporated into the growing oxide where it changes the mechanism of growth, reducing the production of the high compressive growth stresses and thus the development of the convoluted oxide morphology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4889
    Keywords: Intergranular oxidation ; nickel-aluminum alloys ; internal oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The development of intergranular oxides in dilute Ni-Al alloys containing 0.55–4.10% Al in Ni-NiO packs and in 1 atm oxygen at 800–1100°C has been examined. In the Ni-NiO packs, preferential intergranular oxide penetration as well as internal oxidation occurs in every case, except in the higher aluminum-containing alloys at 1100°C. Several different types of intergranular oxide morphology were observed, depending on alloy aluminum concentration and on temperature. The oxides in the more dilute alloys are thin and relatively continuous and are accompanied by preferential penetration of internal oxide particles in the adjacent grains. Thicker intergranular oxides are precipitated in the more concentrated alloys while, in some situations, numerous fine oxide particles are formed well ahead of the main intergranular oxide. The intergranular oxidation is facilitated by high stress development in the specimens due to increases in volume as internal and intergranular oxides are formed. These stresses create microvoids in the grain boundaries immediately ahead of the advancing internal and intergranular oxides, resulting in preferential nucleation and growth of further intergranular oxides. This is the case particularly at the lower temperatures where other stress-relief processes cannot operate. The resulting relatively continuous, incoherent intergranular oxide-metal interface allows a high flux of oxygen to the advancing intergranular oxide front. Preferential intergranular oxidation is much less extensive in the presence of a thickening external NiO scale, due to accommodation of the volume increases on internal oxide formation by vacancies injected into the alloy from the growing cationdeficient scale.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...