Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 8-19 
    ISSN: 0006-3592
    Keywords: membrane transport ; proton-motive force ; pH homeostasis ; uncoupling agent ; glycolysis ; acetic acid ; lactic acid ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Escherichia coli produces lactate and acetate in significant amounts during both aerobic and anaerobic glycolysis. A model describing the mechanism of protein mediated lactate transport has previously bee proposed. A simple theoretical analysis here indicates that the proposed model would be drain cellular energy resources by catalytically dissipating the proton-motive force. An experimental analysis of lactate and acetate transport employ nuclear magnetic resonance (NMR) spectroscopy to measure the relative concentration of these end products on the two sides of the cytoplasmic membrane of anaerobically glycolyzing cells. Comparison of measured concentration rations to those expected at equilibrium for various transport modes indicates that acetate is a classical uncoupling agent, permeating the membrane oat comparable rates in the dissociated and undissociated forms. The lactate concentration ratio changes market markedly after an initial period of sustained glycolysis. This change is most readily explained as resulting from a lactate transport system that responds to an indicator of glycolytic activity. The data further indicates that lactate permeates the membrane in both dissociated and undissociated forms. Both acids, then are capable of catalytically dissipating the proton-motives force. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...