Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Order 5 (1988), S. 131-141 
    ISSN: 1572-9273
    Keywords: Primary 06A10 ; Secondary 68R99, 68Q20 ; Partially ordered set ; bump number ; linear extensions ; two-processor scheduling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Let (X, 〈) be a partially ordered set. A linear extension x 1, x 2, ... has a bump whenever x i〈x i+1, and it has a jump whenever x iand x i+1are incomparable. The problem of finding a linear erxtension that minimizes the number of jumps has been studied extensively; Pulleyblank shows that it is NP-complete in the general case. Fishburn and Gehrlein raise the question of finding a linear extension that minimizes the number of bumps. We show that the bump number problem is closely related to the well-studied problem of scheduling unit-time tasks with a precedence partial order on two identical processors. We point out that a variant of Gabow's linear-time algorithm for the two-processor scheduling problem solves the bump number problem. Habib, Möhring, and Steiner have independently discovered a different polynomial-time algorithm to solve the bump number problem.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...