Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • metal(II) picolinate and quinaldinate  (1)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of thermal analysis and calorimetry 50 (1997), S. 569-586 
    ISSN: 1572-8943
    Keywords: crystal structure ; metal(II) picolinate and quinaldinate ; thermal degradation of imidazole and pyrazole complexes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Complexes of the type M(Pa)2(HAz)2 and M(QA)2(HAz)2 (M=cobalt(II) and nickel(II); HPa=picolinic acid, HQa=quinaldic acid; HAz=azoles like imidazole (Him), pyrazole (HPz), benzimidazole (HBzIm) etc.) show a similar thermal behaviour. In the first step of decomposition the corresponding azolinium picolinates or quinaldinates (H2AzPa, H2AzQa) are split off with formation of polymeric mixed ligand complexes M(Pa)(Az) or M(Qa)(Az). X-ray analysis of Co(Qa)2(HBzIm)2 XIIIa illustrates a proton transfer and a subsequent thermal removal of benzimidazolinium quinaldinate (H2BzImQa): Hydrogen bridges from pyrrole nitrogen of the benzimidazole to the non-coordinated oxygen of the quinaldinate predetermine the thermal initiated proton transfer. The high volatility of the heterocyclic acids and the nitrogen coordination are responsible for the formation of the mixed ligand complex Co(Qa)(BzIm) XIVa. Exceptions are the complexes M(Pa)2(HPz)2 XIa-b and M(Qa)2(HIm)2 XVIIa-b. Pyrazole is eliminated from the complexes XIa-b with formation of the solvent-free inner complex M(Pa)2 XIIa-b. From compounds XVIIIa-b quinaldic acid or their decomposition products are split off and a high temperature modification of M(Im)2 XVIIIa-b is formed at elevated temperature. XVIIIa-b are decomposed to the cyanides M(CN)2 similarly to the thermal behaviour of Cu(Im). In the first step the thermal degradation of imidazole and pyrazole adducts of copper(II) picolinates and quinaldinates is characterized by the elimination of azoles. The reason for this thermal behaviour is the weaker coordination of the azole heterocycles in copper chelate compounds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...