Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 16 (1999), S. 1245-1253 
    ISSN: 1573-904X
    Keywords: molecular dynamics simulations ; molar adjusted eye scores ; partial least-squares regression ; genetic function approximation ; quantitative structure-activity relationship
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. The purpose of this study was to explore a potential mechanism of eye irritation, and to construct a corresponding general quantitative structure-activity relationship (QSAR) model, in terms of diversity of irritant chemical structure, based on the Draize eye irritation ECETOC data set. Methods. Molecular dynamic simulation (MDS) was used to generate intermolecular membrane-solute interaction properties. These intermolecular properties were combined with intramolecular physicochemical properties and features of the solute (irritant) to construct QSAR models using multi-dimensional linear regression and the Genetic Function Approximation (GFA) algorithm. Results. Significant QSAR models for estimating eye irritation potential were constructed in which solute aqueous solvation free energy and solute-membrane interaction energies are the principle correlation descriptors. These physicochemical descriptors were selected from a trial set of 95 descriptors for 18 structurally diverse compounds fully representative of the ECETOC set of 38 compounds. Conclusions. Combining intermolecular solute-membrane interaction descriptors with intramolecular solute descriptors yields statistically significant eye irritation QSAR models. The resultant QSAR models support an eye irritation mechanism of the action in which increased aqueous solubility of the irritant and its strength of binding to the membrane both increase eye irritation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 15 (1998), S. 303-311 
    ISSN: 1573-904X
    Keywords: antiarrhythmics ; molecular dynamics ; partial least squares regression ; genetic function approximation ; quantitative structure-activity relationships
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. This study was done to explore the relationships of both macroscopic and molecular level physicochemical properties to in-vivo antiarrhythmic activity and interactions with phospholipid membranes for a set of cationic-amphiphilic analogs. Methods. The 4D-QSAR method, recently developed by Hopfinger and co-workers (1), was employed to establish 3D-QSAR/QSPR models. Molecular dynamics simulations provided the set of conformational ensembles which were analyzed using partial least squares regression in combination with the Genetic Function Approximation algorithm to construct QSAR and QSPR models. Results. Significant QSAR models for in-vivo antiarrhythmic activity were constructed in which logP (the partition coefficient), and specific grid cell occupancy (spatial) descriptors are the main activity correlates. LogP is the most significant QSAR descriptor. 4D-QSPR models were also developed for two analog-membrane interaction properties, the change in a membrane transition temperature and the ability of the analogs to displace adsorbed Ca2+-ions from phosphatidylserine mono-layers. Conclusions. Spatial features, represented by grid cell occupancy descriptors, supplement partition coefficient, which is the most important determinant of in-vivo antiarrhythmic activity, to provide a comprehensive model for drug action. The QSPR models are less significant in statistical measures, and limited to interpretation of possible molecular mechanisms of action.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...