Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 19 (1998), S. 726-740 
    ISSN: 0192-8651
    Keywords: molecular dynamics ; energy equipartition ; macromolecular simulations ; constant temperature simulations ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: This article describes an unexpected phenomenon encountered during MD simulations: velocity rescaling using standard protocols can systematically change the proportion of total kinetic energy (KE) found in motions associated with the various degrees of freedom. Under these conditions, the simulation violates the principle of equipartition of energy, which requires a mean kinetic energy of RT/2 in each degree of freedom. A particularly pathological form of this problem occurs if one does not periodically remove the net translation of (and rotation about) the center of mass. In this case, almost all of the kinetic energy is converted into these two kinds of motion, producing a system with almost no kinetic energy associated with the internal degrees of freedom. We call this phenomenon “the flying ice cube.” We present a mathematical analysis of a simple diatomic system with two degrees of freedom, to document the origin of the problem. We then present examples from three kinds of MD simulations, one being an in vacuo simulation on a diatomic system, one involving a low resolution model of DNA in vacuo, and the third using a traditional all-atom DNA model with full solvation, periodic boundary conditions, and the particle mesh Ewald method for treating long-range electrostatics. Finally, we discuss methods for avoiding the problem.   © 1998 John Wiley & Sons, Inc.   J Comput Chem 19: 726-740, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...