Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-7276
    Keywords: c-MET ; gallbladder cancer cell line ; HGF ; invasion ; motility ; proteolytic enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Human gallbladder cancer is highly malignant and its prognosis is usually poor depending on the extent of surrounding tissue invasion. We examined in vitro the invasive activity of four gallbladder cancer cell lines (GB-d1, GB-h3, GB-d2 and FU-GBC-1) in the absence or presence of hepatocyte growth factor (HGF). In type 1 collagen gel culture, HGF stimulated cell proliferation and induced an invasive phenotype of arborizing structures in GB-d1, GB-h3 and GB-d2. In a Matrigel invasion assay, invasion was also induced in three of these cell lines by HGF but not in FU-GBC-1. Cellular motility was, however, stimulated by HGF in all of the four cell lines to various extents. Zymography for proteolytic enzymes demonstrated high levels of type IV collagenase and urokinase-type plasminogen activator (u-PA) activity in GB-d1, GB-h3 and GB-d2 even in the absence of HGF. In the presence of HGF, the 72 kDa type IV collagenase (MMP-2) activity of GB-h3 and u-PA activities of GB-d1, GB-h3 and GB-d2 were enhanced. In contrast, the MMPs and PAs activities of FU-GBC-1 were faint irrespective of the addition of HGF. A Western blot analysis demonstrated higher levels of 190 kDa c-MET product (HGF receptor) of GB-d1, GB-h3 and GB-d2 than that of FU-GBC-1. The invasion in the Matrigel assay stimulated by HGF was inhibited by protease inhibitors, aprotinin and FOY-305, as well as by anti-HGF antibody. These results thus suggest that, in addition to the importance of the proteolytic activity, the cellular motility induced via the HGF/HGF-receptor system is essential for the invasive progression of gallbladder carcinoma cells. © Rapid Science 1998
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: cancer ; collagenase ; Met ; cytokine ; metastasis ; motility ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Hepatocyte growth factor (HGF) is known to have a number of biological properties including promoting tumor progression of human carcinomas. Metastasis involves a number of events that are attributed to induction by paracrine factors such as HGF. Identification of natural inhibitors of these events would allow better control of tumor progression. Recently we demonstrated that interleukin 4 (IL-4) can regulate proliferation of various human carcinoma cell lines. In the present study, we used established human colon carcinoma cell lines and primary colon carcinoma cell cultures to determine if IL-4 could regulate HGF-induced cell proliferation and other events of tumor progression such as MMP (matrix metalloproteinases)-1, -2, and -9 production, cell migration and cell-matrix invasive activity. All colon carcinoma cell lines expressed HGF and IL-4 receptors. IL-4 significantly inhibited HGF-induced proliferation of one cell line. Cell-matrix invasion was significantly enhanced by HGF (0.1-10 ng/ml); IL-4 (1-10 U/ml) significantly inhibited HGF-induced invasion in a dose-dependent manner. IL-4 also inhibited HGF-induced cell-matrix invasion of metastatic colon carcinoma cells and HGF-induced cell migration. HGF enhanced MMP-1, -2, and -9 production by cell lines. This effect could be inhibited by IL-4. These findings indicate that IL-4 is a potent inhibitor of HGF-induced invasion and metastasis-related functions of human colon carcinoma cells. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...