Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 32 (1993), S. 575-580 
    ISSN: 1435-1528
    Keywords: Glass transition ; biopolymers ; amorphous sugars ; solid foods ; plasticizers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Mechanical changes in biomaterials at and around their glass transition are key factors in their functionality and/or stability. They are described in terms of a relationship betwen a relative stiffness R(T,M) defined as the ratio between a modulus or storage modulus at a temperature T, and moisture M, and its magnitude in the glassy state. The relationship, in turn, is expressed by the model R(T,M) = 1/[1+exp [{T-T c,(M))/a(M)]} where T c(M) is a critical temperature identifying the transition temperature range and a(M) a constant representing the relationship's slope. The proposed model correctly accounts for the downward concavity of the stiffness vs temperature relationship at the transition onset. Published data on biosolids indicate that T c(M) can be described by a single exponential decay term, and so most probably also a(M). Incorporation of these terms into the model enables the creation of realistic three-dimensional maps of the relative stiffness-temperature-moisture relationship at and in the neighborhood of the glass transition region. In principle, the same method can also be used to describe the effect of plasticizers other than water if their influence on T cand the steepness parameter can be formulated as an algebraic expression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 36 (1997), S. 686-693 
    ISSN: 1435-1528
    Keywords: Key words Lubricated squeezing flow ; elongational viscosity ; slip ; mayonnaise ; mustard
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Commercial mayonnaise and mustard samples placed in a wide, shallow Teflon container were compressed by a wide Teflon plate to induce an ‘imperfect’ lubricated squeezing flow. A dominant squeezing flow regime could be clearly identified as a linear region in the log F(t) vs log H(t) relationship, F(t) and H(t) being the momentary force and specimen height respectively. The slope of the relationship enabled the estimation of the flow index, n, and the consistency coefficient K. The n values of the mayonnaise were on the order of 0.6–0.85 and those of the mustard about 0.7. The corresponding K values were on the order of 6–13 and 4–5kPasn respectively. Considering the crudeness of the array the measurements were highly reproducible and sensitive enough to detect differences (mayonnaise) or establish similarities (mustard) in products of different brands. The calculated flow index was practically independent of the plate‘s radius and of the consistency coefficient, which had a weak dependency on the latter. The calculated elongational viscosity vs biaxial strain rate relationship could also be used to compare the different products and brands. At 0.01s–1 the elongational viscosity of the maynonnaise was on the order of 150kPas, and of the mustard 60kPas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...