Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0887-3585
    Keywords: protein structure ; protein sequences ; protein design de novo ; protein engineering ; computer algorithms ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: What is the current state of the art in protein design? This question was approached in a recent two-week protein design workshop sponsored by EMBO and held at the EMBL in Heidelberg. The goals were to test available design tools and to explore new design strategies. Five novel proteins were designed: Shpilka, a sandwich of two four-stranded β-sheets, a scaffold on which to explore variations in loop topology; Grendel, a four-helical membrane anchor, ready for fusion to water-soluble functional domains; Fingerclasp, a dimer of interdigitating β-β-α units, the simplest variant of the “handshake” structural class; Aida, an antibody binding surface intended to be specific for flavodoxin; Leather - a minimal NAD binding domain, extracted from a larger protein. Each design is available as a set of three-dimensional coordinates, the corresponding amino acid sequence and a set of analytical results. The designs are placed in the public domain for scrutiny, improvement, and possible experimental verification.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 26 (1996), S. 363-376 
    ISSN: 0887-3585
    Keywords: hydrogen bond ; network ; force field ; protein structure ; validation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A method is presented that positions polar hydrogen atoms in protein structures by optimizing the total hydrogen bond energy. For this goal, an empirical hydrogen bond force field was derived from small molecule crystal structures. Bifurcated hydrogen bonds are taken into account. The procedure also predicts ionization states of His, Asp, and Glu residues. During optimization, sidechain conformations of His, Gln, and Asn residues are allowed to change their last χ angle by 180° to compensate for crystallographic misassignments. Crystal structure symmetry is taken into account where appropriate. The results can have significant implications for molecular dynamics simulations, protein engineering, and docking studies. The largest impact, however, is in protein structure verification: over 85% of protein structures tested can be improved by using our procedure. Proteins 26:363-376 © 1996 Wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 14 (1992), S. 213-223 
    ISSN: 0887-3585
    Keywords: protein folding ; protein structure ; rotamers ; simulated annealing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: An unknown protein structure can be predicted with fair accuracy once an evolutionary connection at the sequence level has been made to a protein of known 3-D structure. In model building by homology, one typically starts with a backbone framework, rebuilds new loop regions, and replaces nonconserved side chains. Here, we use an extremely efficient Monte Carlo algorithm in rotamer space with simulated annealing and simple potential energy functions to optimize the packing of side chains on given backbone models. Optimized models are generated within minutes on a workstation, with reasonable accuracy (average of 81% side chain χ1 dihedral angles correct in the cores of proteins determined at better than 2.5 Å resolution). As expected, the quality of the models decreases with decreasing accuracy of backbone coordinates. If the backbone was taken from a homologous rather than the same protein, about 70% side chain X1 angles were modeled correctly in the core in a case of strong homology and about 60% in a case of medium homology. The algorithm can be used in automated, fast, and reproducible model building by homology. © 1992 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 20 (1994), S. 216-226 
    ISSN: 0887-3585
    Keywords: evolutionary information ; multiple alignments ; neural networks ; protein structure prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Currently, the prediction of three-dimensional (3D) protein structure from sequence alone is an exceedingly difficult task. As an intermediate step, a much simpler task has been pursued extensively: predicting 1D strings of secondary structure. Here, we present an analysis of another 1D projection from 3D structure: the relative solvent accessibility of each residue. We show that solvent accessibility is less conserved in 3D homologues than is secondary structure, and hence is predicted less accurately from automatic homology modeling; the correlation coefficient of relative solvent accessibility between 3D homologues is only 0.77, and the average accuracy of predictions based on sequence alignments is only 0.68. The latter number provides an effective upper limit on the accuracy of predicting accessibility from sequence when homology modeling is not possible. We introduce a neural network system that predicts relative solvent accessibility (projected onto ten discrete states) using evolutionary profiles of amino acid substitutions derived from multiple sequence alignments. Evaluated in a cross-validation test on 238 unique proteins, the correlation between predicted and observed relative accessibility is 0.54. Interpreted in terms of a three-state (buried, intermediate, exposed) description of relative accessibility, the fraction of correctly predicted residue states is about 58%. In absolute terms this accuracy appears poor, but given the relatively low conservation of accessibility in 3D families, the network system is not far from its likely optimal performance. The most reliably predicted fraction of the residues (50%) is predicted as accurately as by automatic homology modeling. Prediction is best for buried residues, e.g., 86% of the completely buried sites are correctly predicted as having 0% relative accessibility. © 1994 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 23 (1995), S. 295-300 
    ISSN: 0887-3585
    Keywords: automatic prediction of protein secondary structure and solvent accessibility ; neural networks ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Accuracy of predicting protein secondary structure and solvent accessibility from sequence information has been improved significantly by using information contained in multiple sequence alignments as input to a neural 'network system. For the Asilomar meeting, predictions for 13 proteins were generated automatically using the publicly available prediction method PHD. The results confirm the estimate of 72% three-state prediction accuracy. The fairly accurate predictions of secondary structure segments made the tool useful as a starting point for modeling of higher dimensional aspects of protein structure. © 1995 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...