Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Molecular and Cellular Endocrinology 44 (1986), S. 243-249 
    ISSN: 0303-7207
    Keywords: MSEL-neurophysin precursor ; guinea pig MSEL-neurophysin ; guinea pig copeptin ; neurohypophysial hormones ; neuropeptide precursor processing
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4935
    Keywords: Diabetes insipidus (Brattleboro) rat ; dibasic processing endopeptidases ; neurosecretory granules ; neurohypophysial hormones ; provasopressin processing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The homozygote Brattleboro rat exhibits a hereditary diabetes insipidus due to a deficiency of vasopressin, the antidiuretic hormone. It has previously been shown that in this animal a single nucleotide deletion in the provasopressin gene leads to a mutant precursor with a C-terminal amino acid sequence different from that of the wild-type. However the N-terminal region including the hormone moiety, the processing signal as well as the first two-thirds of the neurophysin is entirely preserved and absence of maturation has to be explained by an additional cause. We show here that the neurohypophysis of the homozygote Brattleboro rat, in contrast to the adenohypophysis, displays a significant decrease in the Lys-Arg processing endopeptidase activity when compared to the heterozygote or the wild-type Wistar. It is suggested that hypothalamic vasopressinergic neurons of the homozygote Brattleboro rat display a deficiency in the processing enzyme in contrast to the oxytocinergic neurons in which processing of prooxytocin is normal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Fish physiology and biochemistry 17 (1997), S. 325-332 
    ISSN: 1573-5168
    Keywords: neurohypophysial hormones ; osmoregulatory neuroendocrine reflex ; hydroosmotic cells ; ion-based osmoregulation ; urea-based osmoregulation ; selective evolution ; neutral evolution ; oxytocin-like peptide diversity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In vertebrates, water and osmolyte homeostasis is controlled by at least three hormonal systems: the hypothalamo-neurohypophysial system, the renin-angiotensin-aldosterone system and the atrial natriuretic factor system. The first system implies neuroendocrine reflexes involving an afferent neural limb from osmo- and baroreceptors to hypothalamus and an efferent endocrine limb from secretory neurons to target cell receptors and transduction to intracellular effectors, namely water and sodium channels. Evolution can affect any level of this molecular cascade. Whereas virtually all vertebrate species have two neurohypophysial hormones, an oxytocin-like and a vasopressin-like peptides, the most primitive vertebrates, Cyclostomata (lampreys and hagfishes) possess a single peptide, vasotocin, so that an early gene duplication occurred before the emergence of fishes, about 400 million years ago. The remarkable evolutionary stability of neurohypophysial hormones in bony vertebrates allows us to trace two main lineages: isotocin-mesotocin-oxytocin and vasotocin-vasopressin. In contrast, in cartilaginous fishes, the oxytocin-like peptides display a great evolutionary diversity: we have identified glumitocin in rays, aspargtocin and valitocin in the spiny dogfish, asvatocin and phasvatocin in the spotted dogfish, and oxytocin in the chimaera. Whereas bony vertebrates regulate their blood osmotic pressure (about 250–450 mOsm kg-1 H2O) essentially through salts, cartilaginous fishes use urea as the main osmolyte for adjusting their osmotic pressure above the external medium (about 1050 mOsm kg-1 H2O for marine fishes). The hypothesis is made that the stability of neurohypophysial hormones in bony vertebrates is due to their implication in ion-based osmoregulation (selective evolution), whereas in Chondrichthyes the occurrence of urea-based osmoregulation has relieved the hormones from this function and therefore made them free to vary (neutral evolution).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...