Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • neutron scattering  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 36 (1984), S. 699-716 
    ISSN: 1572-9613
    Keywords: Solid surfaces ; fractal structures ; adsorption ; neutron scattering ; interfacial diffusion ; catalysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract For an unexpected variety of solids, the surface topography from a few up to as many as a thousand angstroms is very well described by fractal dimension,D. This follows from measurements of the number of molecules in surface monolayers, as function of adsorbate or adsorbent particle size. As an illustration, we present a first case, amorphous silica gel, whereD has been measured independently by each of the two methods. (The agreement, 3.02±0.06 and 3.04±0.05, is excellent, and the result is modeled by a “heavy” generalized Menger sponge.) The examples as a whole divide into amorphous and crystalline materials, but presumably all of them are to be modeled as random fractal surfaces. The observedD values exhaust the whole range between 2 and 3, suggesting that there are a number of different mechanisms by which such statistically self-similar surfaces form. We show that fractal surface dimension entails interfacial power laws much beyond what is the source of theseD values. Examples are reactive scattering events when neutrons of variable flux pass the surface (this is of interest for locating fractal substrates that may support adlayer phase transitions); the rate of diffusion-controlled chemical reactions at fractal surfaces; and the fractal implementation of the traditional idea that the active sites of a catalyst are edge and apex sites on the surface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...