Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Astronomy letters 26 (2000), S. 691-698 
    ISSN: 1562-6873
    Keywords: pulsars ; neutron stars ; X-ray sources ; scattering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We present the results of our comparative timing and spectral analysis of the high and low (off) states in the X-ray pulsar Her X-1 based on data from the ART-P telescope onboard the Granat observatory. A statistically significant (several mCrab) persistent flux with a simple power-law spectrum was detected during the low state. The spectral slope changed from observation to observation by almost a factor of 2. Pulsations were detected only during the high state of the source, when its flux was a factor of ∼25 larger than the low-state flux. The spectral shape of Her X-1 in its high state was complex, with the parameters depending on pulse phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Astronomy letters 26 (2000), S. 699-724 
    ISSN: 1562-6873
    Keywords: neutron stars ; luminosity ; disk accretion ; X-ray bursters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The energy release L s on the surface of a neutron star (NS) with a weak magnetic field and the energy release L d in the surrounding accretion disk depend on two independent parameters that determine its state (for example, mass M and cyclic rotation frequency f) and is proportional to the accretion rate. We derive simple approximation formulas illustrating the dependence of the efficiency of energy release in an extended disk and in a boundary layer near the NS surface on the frequency and sense of rotation for various NS equations of state. Such formulas are obtained for the quadrupole moment of a NS, for a gap between its surface and a marginally stable orbit, for the rotation frequency in an equatorial Keplerian orbit and in the marginally stable circular orbit, and for the rate of NS spinup via disk accretion. In the case of NS and disk counterrotation, the energy release during accretion can reach $$0.67\dot Mc^2 $$ . The sense of NS rotation is a factor that strongly affects the observed ratio of nuclear energy release during bursts to gravitational energy release between bursts in X-ray bursters. The possible existence of binary systems with NS and disk counterrotation in the Galaxy is discussed. Based on the static criterion for stability, we present a method of constructing the dependence of gravitational mass M on Kerr rotation parameter j and on total baryon mass (rest mass) m for a rigidly rotating neutron star. We show that all global NS characteristics can be expressed in terms of the function M(j, m) and its derivatives. We determine parameters of the equatorial circular orbit and the marginally stable orbit by using M(j, m) and an exact solution of the Einstein equations in a vacuum, which includes the following three parameters: gravitational mass M, angular momentum J, and quadrupole moment Ф2. Depending on Ф2, this solution can also be interpreted as a solution that describes the field of either two Kerr black holes or two Kerr disks.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Astronomy letters 26 (2000), S. 765-771 
    ISSN: 1562-6873
    Keywords: neutron stars ; pulsars ; X-ray sources
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Observations of the X-ray pulsar Vela X-1 with the ART-P telescope onboard the Granat Observatory are presented. Variability on a time scale of several thousand seconds was detected; intensity variations are shown to be accompanied by changes in the source’s spectrum. The hardness was also found to be highly variable on a scale of one pulsation period. The source’s spectrum exhibits an absorption feature at energy ∼7 keV, which is apparently attributable to cyclotron scattering/absorption in the neutron-star magnetic field. Weak persistent emission was detected during an X-ray eclipse, which probably resulted from the scattering of pulsar emission in the stellar wind from an optical star.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1562-6873
    Keywords: neutron stars ; luminosity ; disk accretion ; X-ray bursters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The total energy E of a star as a function of its angular momentum J and mass M in the Newtonian theory, E=E(J, M) [in general relativity, the gravitational mass of a star as a function of its angular momentum J and rest mass m, M=M(J, m)], is used to determine the remaining parameters (angular velocity, chemical potential, etc.) in the case of rigid rotation. Expressions are derived for the energy release during accretion onto a cool (with constant entropy), rapidly rotating neutron star (NS) in the Newtonian theory and in general relativity. A separate analysis is performed for the cases where the NS equatorial radius is larger and smaller than the radius of the marginally stable orbit in the disk plane. An approximate formula is proposed for the NS equatorial radius for an arbitrary equation of state, which matches the exact equation of state at J=0.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...