Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9729
    Keywords: activated sludge ; dichlorophenol ; monooxygenation ; nicotinamide adenine dinucleotide ; phenolics ; specific growth rate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The two-tank accelerator/aerator modification of activated sludge significantly increases the biodegradation of hydrocarbons requiring initial monooxygenation reactions, such as phenol and 2,4-dichlorophenol (DCP). The small accelerator tank has a controlled low dissolved oxygen (DO) concentration that can enrich the biomass in NADH + H+. It also has a very high specific growth rate (μacc) that up-regulates the biomass’s content of the monooxygenase enzyme. Here, we develop and test the ACCEL model, which quantifies all key phenomena taking place when the accelerator/aerator system is used to enhance biodegradation of hydrocarbons requiring initial monooxygenations. Monooxygenation kinetics follow a multiplicative relationship in which the organic substrates (phenol or DCP) and DO have separate Monod terms, while the biomass’s content of NADH + H+ has a first-order term. The monooxygenase enzyme has different affinities (K values) for phenol and DCP. The biomass’s NADH + H+ content is based on a proportioning of NAD(H) according to the relative rates of NADH + H+ sources and sinks. Biomass synthesis occurs simultaneously through utilization of acetate, phenol, and DCP, but each has its own true yield. The ACCEL model accurately simulates all trends for one-tank and two-tank experiments in which acetate, phenol, and DCP are biodegraded together. In particular, DCP removal is affected most by DOacc and the retention-time ratio, Θacc/Θtotal. Adding an accelerator tank dramatically increases DCP removal, and the best DCP removal occurs for 0.2 〈 DOacc  〈 0.5 mg/l and 0.08 〈 Θacc/Θtotal 〈 0.2. The rates of phenol and DCP utilization follow the multiplicative relationship with a maximum specific rate coefficient proportional to μacc. Finally, μacc increases rapidly for Θacc/Θtotal 〈 0.25, acetate removal in the accelerator fuels the high μacc, and the biomass’s NADH + H+ content increases very dramatically for DOacc 〈 0.25 mg/l.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 690-699 
    ISSN: 0006-3592
    Keywords: cofactor responses ; dual limitation ; nicotinamide adenine dinucleotide ; phosphorylation potential ; metabolic control ; Pseudomonas putida ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The highly systematic responses of cellular cofactors to controlled substrate limitations of electron donor, electron acceptor, and both (dual limitation) were quantified using continuous-flow cultures of Pseudomonas putida. The results showed that the NADH concentration in the cells decreased gradually as the specific rate of electron-donor utilization (-qd) fell or increased systematically as oxygen limitation became more severe for fixed -qd, while the NAD concentration was invariant. The NAD(H) responses demonstrated a common strategy; compensation for a low concentration of an externally supplied substrate by increasing (or decreasing) the concentration of its internal cosubstrate (or coproduct). The compensation was dramatic, as the NAD/NADH ratio showed a 24-fold modulation in response to depletion of dissolved oxygen (DO) or acetate. In the dual-limitation region, the compensating effects toward depletion of one substrate were damped, because the other substrate was simultaneously at low concentration. However, the NAD(H) responses minimized the adverse impact from substrate depletion on overall cell metabolism. Cellular contents of ATP, ADP, and Pi were mostly affected by -qd, such that the phosphorylation potential, ATP/ADP · Pi, increased as -qd fell due to depletion of acetate, DO, or both. Since the respiration rate should be slowed by high ATP/ADP · Pi, the cellular response seems to amplify an unfavorable environmental condition when oxygen is depleted. The likely reason for this apparent disadvantageous response is that the response of phosphorylation potential is more keenly associated with other aspects of metabolic control, such as for synthesis, which requires Pi for production of phospholipids and nucleotides. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...