Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5001
    Keywords: active site ; assignments ; Fe ; non-heme iron ; paramagnetic ; redox ; superoxide dismutase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract We have developed and employed multiple amino acid-specific isotopic labeling schemes to obtain definitive assignments for active site 1H NMR resonances of iron(II)- and iron(III)-superoxide dismutase (Fe(II)SOD and Fe(III)SOD) from Escherichia coli. Despite the severe relaxivity of high-spin Fe(III), we have been able to assign resonances to ligand His′ δ1 protons near 100 ppm, and β and α protons collectively between 20 and 50 ppm, in Fe(III)SOD. In the reduced state, we have assigned all but 7 ligand protons, in most cases residue-specifically. A pair of previously unreported broad resonances at 25.9 and 22.1 ppm has been conclusively assigned to the β protons of Asp 156, superseding earlier assignments (Ming et al. (1994) Inorg. Chem., 33, 83–87). We have exploited higher temperatures to resolve previously unobserved ortho-like ligand His proton resonances, and specific isotopic labeling to distinguish between the possibilities of δ2 and ε1 protons. These are the closest protein protons to Fe(II) and therefore they have the broadest (∼4000 Hz) and most difficult to detect resonances. Our assignments permit interpretation of temperature dependences of chemical shifts, pH dependences and H/D exchange rates in terms of a hydrogen bond network and the Fe(II) electronic state. Interestingly, Fe(II)SOD's axial His ligand chemical shifts are similar to those of the axial His ligand of Rhodopseudomonas palustris cytochrome c′ (Bertini et al. (1988) Inorg. Chem., 37, 4814–4821) suggesting that Fe(II)SOD's equatorial His2Asp− ligation is able to reproduce some of the electronic, and thus possibly chemical, properties of heme coordination for Fe2+.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...