Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 30 (1992), S. 2003-2010 
    ISSN: 0887-624X
    Keywords: plasma polymerization ; acrylonitrile ; 1,2-dicyanoethylene ; tetracyanoethylene ; conjugated imine ; ketene-imine ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Plasma polymerizations of three cyano compounds - acrylonitrile (AN), 1,2-dicyanoethylene (FN), and tetracyanoethylene (TCE) - were investigated by FT IR and XPS, and the transforamtion of cyano groups during the plasma polymerization was discussed. The results pointed out an aspect of the preparation of plasma films with cyano groups. Plasma polymerizations of AN, FN, and TCE deposited brown or dark brown films that contained carbon, nitrogen, and oxygen. The elemental composition of the plasma films, especially N/C atomic ratio, showed a monomer dependence but no rf power dependence. The plasma films contained amide and amino groups, and ketene-imine and conjugated  -  C = N  -  structures as well as cyano groups as nitrogen functionalities, and carbonyl and carboxyl groups as oxygen functionalities. For the preparation of plasma films with cyano groups, compounds with more than two cyano groups themselves are not suitable as monomers. The operation of plasma polymerization under mild plasma conditions at low rf power and in no oxygen atmosphere is favorable for the preparation of plasma films with cyano groups. © 1992 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 33 (1995), S. 2001-2011 
    ISSN: 0887-624X
    Keywords: surface modification ; aromatic polyamides ; oxygen plasma ; bond scission ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The surface of poly(p-phenylene terephthalamide) (PPTA) films was modified by oxygen plasma, and the modified film surface was analyzed by an advancing contact meter and X-ray photoelectron spectroscopy (XPS). The advancing contact measurement showed that the oxygen plasma treatment made the surface of the PPTA film hydrophilic. The XPS analyses also showed the increase in the O/C and N/C atom ratio, especially the O/C atom ratio, at the PPTA film surface by the oxygen plasma treatment. A main oxygen functionality formed by the oxygen plasma treatment is a carboxylic acid group, and a main nitrogen functionality formed is a protonated amino group. The formation of the oxygen and nitrogen functionalities formed by the oxygen plasma treatment is not restricted to the surface of the PPTA film, but penetrates at least 35 Å deep from the film surface. The formation of these carboxylic acid and protonated amino groups is a result of the bond scission of the amide linkages in the PPTA film. Interactions of photons in the oxygen plasma rather than interactions of electrons and activated oxygen atoms contribute greatly to the bond scission. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...