Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4889
    Keywords: pack cementation ; codeposition ; boron-modified ; germanium-doped ; titanium silicide ; diffusion coatings ; multilayered growth kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A halide-activated, cementation pack has been developed to codeposit either silicon and boron or else silicon and germanium in a single processing/reaction step to grow Ti-silicide diffusion coatings on commercially pure (CP) titanium, Ti-22Al-27Nb, and Ti-20Al-22Nb. Since boron is nearly insoluble in TiSi2, a TiB2 layer is localized at the surface of the B-modified silicide coatings. The thickness of the TiB2 layer is controlled by the choice of boron activity and halide activator in the pack. Germanium is soluble in the Ti-silicide layers but inhomogeneously distributed in the Ge-doped silicide coating. The germanium content is controlled by choices of the Si-to-Ge ratio and the halide activator in the pack. The growth kinetics for the five-layered B-modified silicide coatings are generally similar to the undoped silicide coatings. The growth mechanism for the five-layered Ge-doped silicide coatings is generally different from the undoped silicides. The growth of dual-layer Ti-boride coatings was also studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4889
    Keywords: Cr-Al coating ; pack cementation ; cyclic oxidation ; isothermal scaling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The simultaneous chromizing — aluminizing of low-alloy steels has achieved Kanthal-like surface compositions of 16–21Cr and 5–8 wt.% Al by the use of cementation packs with a Cr-Al masteralloy and an NH4Cl activator salt. An initial preferential deposition of Al into the alloy induces the phase transformation from austenite to ferrite at the 1150°C process temperature. The low solubility of carbon in ferrite results in the rejection of solute C into the austenitic core, thereby preventing the formation of an external Cr-carbide layer, which would otherwise block aluminizing and chromizing. The deposition and rapid diffusion of Cr and Al into the external bcc ferrite layer follows. Parabolic, cyclic-oxidation kinetics for alumina growth on the coated steels in air were observed over a wide range of relatively low temperatures (637–923°C).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 42 (1994), S. 303-333 
    ISSN: 1573-4889
    Keywords: codeposition ; diffusion coating ; pack cementation ; thermodynamics ; oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The simultaneous deposition of Cr and Si into plain carbon, low-alloy, and austenitic steels using a halide-activated pack-cementation process is described. Equilibrium partial pressures of gaseous species have been calculated using the STEPSOL computer program to aid in designing specific processes for codepositing the desired ratios of Cr and Si into a given alloy. The calculations indicate that NaCl-activated packs are chromizing, while NaF-activated packs deposit more Si with less Cr. The use of a “dual activator” (e.g., NaF+NaCl) allows for the deposition of both Cr and Si in the desired amounts. Single-phase ferritic coatings (150–250 microns thick) with a surface concentration of 20–35 wt.% Cr and 2–4% Si have been grown on AISI 1018, Fe-2.25 Cr-1.0Mo-0.15C, and Fe-0.5 Cr-0.5 Mo-0.2C steels using packs containing a 90 wt.% Cr-10Si binary source alloy, a NaF+NaCl activator, and a silica filler. Two-phase coatings (approximately 75 microns thick) containing 20–25 wt.% Cr and 2.0–2.4% Si have been obtained on 304 stainless steel using packs containing a 90 wt.% Cr-10Si binary source alloy, a NaF activator, and an alumina filler. The same pack chemistry allowed the diffusion of Cr and Si into the austenitic Incoloy 800 alloy without a phase change. A coated Fe-2.25 Cr-1.0 Mo-0.15 C coupon with a surface concentration of Fe-34 wt.% Cr-3Si was cyclically oxidized in air at 700°C for over four months and 47 cycles. The weight gain was very low (〈0.2 mg/cm2) with no scale spalling detected. Coated coupons of AISI 1018 steel, and Fe-0.5 Cr-0.5 Mo-0.2C steel have shown excellent oxidation-sulfidation resistance in reducing, sulfur-containing atmospheres at temperatures from 400 to 700°C and in erosion and erosion-oxidation testing in air at 650 and 850°C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...