Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • poly(ethylene glycol)  (3)
  • 1
    ISSN: 1573-4994
    Keywords: Fusion ; poly(ethylene glycol) ; fluorescence ; DPH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A method has been developed for calculating the expected fluorescence lifetime of the DPH p PC probe distributed between different membrane environments. We show how this method can be used to distinguish between lipid transfer and fusion between large unilamellar vesicles occurring in the presence of poly(ethylene glycol) (PEG). This application of the calculation took into consideration the heterogeneity of microenvironments experienced by the probe in a sample containing vesicle aggregates of different sizes. Assuming that the aggregate size distribution was a delta function of the aggregate size, comparison of the calculated and observed lifetimes yielded an estimate of the vesicle aggregate size. For vesicles of varying compositions in the presence of dehydrating concentrations of PEG, this method suggested that only small aggreggates formed. For vesicles that could be demonstrated by other means not to have fused, the data were consistent with lipid transfer occurring only between the outer leaflets of two to four vesicles, even at high PEG concentrations. For vesicles that could be demonstrated to fuse by contents mixing and size changes, the fluorescence lifetime data were consistent with lipid transfer between both the inner and the outer leaflets of two to four fused vesicles. At very high PEG concentrations, where extensive rupture and large, multilamellar products were previously observed, the lifetime data were consistent with much more extensive lipid transfer within larger aggregates. The agreement of predictions made on the basis of lifetime measurements with other observations attests to the validity of the fluorescence lifetime method. In addition, the model and data presented here provide evidence that fusion occurs between small numbers of PEG-aggregated vesicles before the removal of PEG.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4994
    Keywords: Phase fluorometry ; lipid exchange ; membrane fusion ; kinetics ; poly(ethylene glycol) ; diphenyl hexatrient
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Rate constants were determined for the transfer of the fluorescent lipid probe 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl] oxy]carbonyl]-3-sn-phosphatidylcholine (DPHpPC) between large, unilamellar extrusion vesicles composed either of dipalmitoyl phosphatidylcholine (DPPC) or of DPPC mixed with a small amount (0.5 mol%) of lyso phosphatidylcholine (Lyso PC). Transfer of the lipid probe in the presence of varying concentrations of poly(ethylene glycol) (PEG) was monitored using the SLM 48000-MHF Multi-Harmonic Fourier Transform phase and modulation spectrofluorometer to collect multifrequency phase and modulation fluorescence data sets on a subsecond time scale. The unique ability of this instrument to yield accurate fluorescence lifetime data on this time scale allowed transfer to be detected in terms of a time-dependent change in the fluorescent lifetime distribution associated with the lipid-like DPHpPC probe. This probe demonstrates two short fluoresence decay times (ca. 1.1–1.4 and 4.3–4.8 ns) in a probe-rich environment but a single long lifetime (ca. 7 ns) in a probe-poor environment. A simple two-state model for initial lipid transfer was used to analyze the multifrequency data sets collected over a 4-s time frame to obtain the time rate of change of the concentrations of donor and acceptor probe populations following rapid mixing of vesicles with PEG. The ability to measure fluorescence lifetimes on this time scale has allowed us to show that the of rate of lipid transfer increased dramatically at 35% PEG in both fusing and nonfusing vesicle systems. These results are interpreted in terms of a distinct interbilayer structure associated with intimate bilayer contact induced by high and potentially fusogenic concentrations of PEG.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4994
    Keywords: fluorescence ; DPH ; fusion ; poly(ethylene glycol)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract An important process in the life of a cell is fusion between cellular membranes. This is the process by which two cellular compartments surrounded by different membranes join to become a single compartment surrounded by a single membrane, without significant loss of compartment contents. To demonstrate fusion, the cell biophysicist must demonstrate all three critical aspects of the process: (1) mixing of membrane components, (2) mixing of compartment contents; and (3) retention of compartment contents. Most commonly, accomplishing this involves the use of fluorescence probes. The general theme to the methods described involves some form of concentration-dependent quenching. An unique method developed in our laboratory utilizes the concentration dependence of the fluorescence lifetime of a phosphatidylcholine containing carboxyethyl diphenylhexatriene at position 2 and palmitic acid at position 1 of glycerol (DPHpPC). The fluorescence lifetime of this molecule and that of its parent fluorophore diphenylhexatriene (DPH) shorten dramatically as their two-dimensional concentrations in a membrane increase. This “lifetime quenching” can be described by dimer formation that reduces the symmetry of the DPH excited state. This phenomenon allows one to use the fluorescence lifetime to gain insight into the local concentration of probe in microscopic regions of a membrane. One application of this is in distinguishing lipid transfer between the outer leaflets of two contacting membrane bilayers from fusion between these membranes that leads to mixing of lipids in both the inner and outer leaflets of the membrane bilayers. This allows a single measurement to demonstrate fusion between membrane pairs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...