Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 32 (1994), S. 159-169 
    ISSN: 0887-6266
    Keywords: polyethylene blends ; phase separation ; fracture toughness ; tensile properties ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Binary blends of unbranched polyethylene (PE) and 5-10% model ethylene-butene random copolymers are used to determine the effects of composition heterogeneity on phase separation in the melt, semicrystalline morphology, plane strain fracture toughness JC and tensile modulus and yield strength. Slowly cooled samples of melt-miscible blends are appreciably tougher (JC = 5.2 kJ/m2) than unblended PE (JC = 2.7 kJ/m2). A blend with the same average short chain branch concentration, but which is phase separated in the melt state, has JC= 3.3 kJ/m2; dispersed domains of amorphous polymer have little effect on toughness. Enhanced toughness is associated with nonuniform morphology formed on slow cooling “one phase” melts composed of chains with different amounts of branching. The relative number of chemically different chains, as opposed to absolute branch concentrations, seems most important. Tensile properties are relatively unaffected by blending at these levels. Results from these model blends are used to consider the properties of compositionally heterogeneous ethylene copolymers. © 1994 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...