Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 493-517 
    ISSN: 0271-2091
    Keywords: viscoelasticity ; Leonov model ; entrance flow ; upwind scheme ; polymer ; rheology ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A simulation of planar 2D flow of a viscoelastic fluid employing the Leonov constitutive equation has been presented. Triangular finite elements with lower-order interpolations have been employed for velocity and pressure as well as the extra stress tensor arising from the constitutive equation. A generalized Lesaint-Raviart method has been used for an upwind discretization of the material derivative of the extra stress tensor in the constitutive equation. The upwind scheme has been further strengthened in our code by also introducing a non-consistent streamline upwind Petrov-Galerkin method to modify the weighting function of the material derivative term in the variational form of the constitutive equation. A variational equation for configurational incompressibility of the Leonov model has also been satisfied explicitly.The corresponding software has been used to simulate planar 2D entrance flow for a 4:1 abrupt contraction up to a Deborah number of 670 (Weissenberg number of 6·71) for a rubber compound using a three-mode Leonov model. The predicted entrance loss is found to be in good agreement with experimental results from the literature. Corresponding comparisons for a commercial-grade polystyrene, however, indicate that the predicted entrance loss is low by a factor of about four, indicating a need for further investigation. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...