Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4854
    Keywords: porous silicon ; photoluminescence ; optical absorption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Using a quantum confinement based-PL model, PS was modelled as a mixture of Quantum Dots (QDs) and Quantum Wires (QWs) having different concentrations and sizes. It was shown that in the optical absorption edge the PL peak energy and the Optical Absorption (OA) exhibit the same trend, depending on preparation conditions. The spectral behaviours of PL and OA are analysed and correlated throughout the shapes and the size distribution of the nanocrystallites forming PS. Using the quantum confinement formalism, the value of the effective band-gap energy determined from the lowest PL energy almost corresponds to that estimated from the optical absorption coefficient. These results suggest that the lowest radiative transition between the valence band and the conduction band corresponds to the largest luminescent wires, and that the radiative recombination process leading to the PL emission occurs in the c-Si crystallite core.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...