Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1573-3904
    Schlagwort(e): ortho-aminobenzoyl-proline ; peptide synthesis ; protease fluorescent substrate ; pyrrolobenzodiazepine-5,11-dione
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Abstract The ortho-aminobenzoic acid (Abz) group is widely employed as a fluorescent marker for peptides used as substrates for the study of proteolytic enzyme activity. In fact, a direct correlation has been observed between fluorescence intensity and enzyme activity. An unusual behavior of the fluorescence properties of this group, which would lead to erroneous evaluation of the enzyme activity, was observed when it is bound directly to proline. Here we report a systematic NMR, fluorescence and X-ray diffraction study of the compounds obtained from Boc-Abz-Pro-NH2, Boc-Abz-Pro-OH, as well as from various other Boc-Abz-Pro-X derivatives, after treatment with HCl or TFA under anhydrous conditions. We verified that, as recently reported, even under these synthetic conditions, deprotection of Boc-Abz-Pro-NH2 or Boc-Abz-Pro-OH leads to the formation of the same product: pyrrolobenzodiazepine-5,11-dione. However, the formation of this compound was not detected with Abz-Pro-N(CH3)2, Abz-Pro-Leu-Gly-NH2 or Abz-pyrrolidine. For all these compounds we observed an unusual behavior for the fluorescence quantum yield of Abz that can be explained as the consequence of a non-radiative deactivation process produced, specifically, by the amidation of the Abz carboxyl group with proline or a similar secondary amine such as pyrrolidine. In conclusion, these results indicate that Abz cannot be used as an internal fluorescence marker for proteolytic enzyme activity when bound directly to proline.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-3904
    Schlagwort(e): ortho-aminobenzoyl-proline ; peptide synthesis ; protease fluorescent substrate ; pyrrolobenzodiazepine-5,11-dione
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Summary Theortho-aminobenzoic acid (Abz) group is widely employed as a fluorescent marker for peptides used as substrates for the study of proteolytic enzyme activity. In fact, a direct correlation has been observed between fluorescence intensity and enzyme activity. An unusual behavior of the fluorescence properties of this group, which would lead to erroneous evaluation of the enzyme activity, was observed when it is bound directly to proline. Here we report a systematic NMR, fluorescence and X-ray diffraction study of the compounds obtained from Boc-Abz-Pro-NH2, Boc-Abz-Pro-OH, as well as from various other Boc-Abz-Pro-X derivatives, after treatment with HCl or TFA under anhydrous conditions. We verified that, as recently reported, even under these synthetic conditions, deprotection of Boc-Abz-Pro-NH2 or Boc-Abz-Pro-OH leads to the formation of the same product: pyrrolobenzodiazepine-5,11-dione. However, the formation of this compound was not detected with Abz-Pro-N(CH3)2, Abz-Pro-Leu-Gly-NH2 or Abz-pyrrolidine. For all these compounds we observed an unusual behavior for the fluorescence quantum yield of Abz that can be explained as the consequence of a non-radiative deactivation process produced, specifically, by the amidation of the Abz carboxyl group with proline or a similar secondary amine such as pyrrolidine. In conclusion, these results indicate that Abz cannot be used as an internal fluorescence marker for proteolytic enzyme activity when bound directly to proline.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...