Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 7 (1987), S. 245-265 
    ISSN: 1572-8986
    Keywords: rf plasma ; electron kinetics ; Boltzmann equation ; electron energy distribution function
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract This paper deals with the self-consistent determination of the rf field amplitude for sustaining the steady-state collision-dominated weakley ionized plasmas in the bulk of the rf discharge and of the time-resolved behavior of the isotropic part of the distribution function as well as of relevant macroscopic quantities in plasmas whose particle loss is dominantly determined by electron attachment. The strict timeresolved treatment is based on the nonstationary Boltzmann equation of the electrons and its numerical solution including, apart from electron number conservative collision processes, the electron attachment and ionization. The investigations are related to an rf plasma in a model gas and in SF6 and are performed for reduced rf field frequencies around 10 MHz Torr−1 which are of particular interest from the point of application of rf discharges for plasma processing. The numerical results show that a large field amplitude of around 160 V cm−1 Torr−1 is necessary to maintain the discharge and that the isotropic distribution, the relevant collision frequencies for attachment and ionization, and the electron density undergo a large modulation during a period of the rf field.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 8 (1988), S. 175-188 
    ISSN: 1572-8986
    Keywords: rf plasma ; electron energy distribution ; Function modulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Electron energy distribution functions (EEDF) and related properties in the bulk region of the rf CO plasma at the reduced rf field frequency ω/p0=π×107 sec−1 torr−1 have been calculated by solving the time-dependent spatially homogeneous Boltzmann equation in the presence of second-kind collisions and have been interpreted on a microphysical basis. The results show that second-kind collisions (vibrational and electronic) strongly affect the temporal evolution of EEDF, of the mean energy, and of the mean collision frequencies for vibrational and electronic excitation processes, as well as for ionization. In particular, second-kind collisions in the CO rf bulk plasma strongly decrease the modulation of the mean ionization frequency during its periodical alteration in the rf field. Furthermore, the effect of second-kind collisions on an approximate determination of the time-averaged EEDF in the rf bulk plasma using the so-called effective-field appriximation has been estimated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...