Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of computer vision 39 (2000), S. 111-129 
    ISSN: 1573-1405
    Keywords: scale-space ; minimal surfaces ; PDE based non-linear image diffusion ; selective smoothing ; color processing ; texture enhancement ; movies and volumetric medical data
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract We extend the geometric framework introduced in Sochen et al. (IEEE Trans. on Image Processing, 7(3):310–318, 1998) for image enhancement. We analyze and propose enhancement techniques that selectively smooth images while preserving either the multi-channel edges or the orientation-dependent texture features in them. Images are treated as manifolds in a feature-space. This geometrical interpretation lead to a general way for grey level, color, movies, volumetric medical data, and color-texture image enhancement. We first review our framework in which the Polyakov action from high-energy physics is used to develop a minimization procedure through a geometric flow for images. Here we show that the geometric flow, based on manifold volume minimization, yields a novel enhancement procedure for color images. We apply the geometric framework and the general Beltrami flow to feature-preserving denoising of images in various spaces. Next, we introduce a new method for color and texture enhancement. Motivated by Gabor's geometric image sharpening method (Gabor, Laboratory Investigation, 14(6):801–807, 1965), we present a geometric sharpening procedure for color images with texture. It is based on inverse diffusion across the multi-channel edge, and diffusion along the edge.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...